-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata.py
137 lines (115 loc) · 4.41 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import sys
import tensorflow as tf
import bucketing
class Vocabulary:
PAD_TOKEN = "<PAD>"
START_TOKEN = "<START>"
END_TOKEN = "<END>"
UNK_TOKEN = "<UNK>"
RESERVED_TOKENS = [PAD_TOKEN, START_TOKEN, END_TOKEN, UNK_TOKEN]
PAD_TOKEN_ID = RESERVED_TOKENS.index(PAD_TOKEN)
START_TOKEN_ID = RESERVED_TOKENS.index(START_TOKEN)
END_TOKEN_ID = RESERVED_TOKENS.index(END_TOKEN)
UNK_TOKEN_ID = RESERVED_TOKENS.index(UNK_TOKEN)
def __init__(self, filename):
rows = [line.strip().split("\t") for line in open(filename)] # [(token, vector), ...]
self.tokens = Vocabulary.RESERVED_TOKENS + [r[0] for r in rows]
self.token_to_id_map = {t: i for i, t in enumerate(self.tokens)}
def token_to_id(self, token):
return self.token_to_id_map.get(token, Vocabulary.UNK_TOKEN_ID)
def id_to_token(self, id_):
return self.tokens[id_]
def encode(self, s, append_eos=True):
ids = [self.token_to_id(t) for t in s.split()]
if append_eos:
ids += [Vocabulary.END_TOKEN_ID]
return ids
def decode(self, ids, truncate=True):
if truncate:
ids = Vocabulary.truncate(ids)
tokens = [self.id_to_token(id_) for id_ in ids]
return " ".join(tokens)
def __len__(self):
return len(self.tokens)
@classmethod
def truncate(cls, ids):
try:
pos = ids.index(cls.END_TOKEN_ID)
except ValueError:
return ids
else:
return ids[:pos]
def load_vocab(hparams):
hparams.source_vocab = Vocabulary(hparams.source_vocab_file)
if hparams.target_vocab_file == hparams.source_vocab_file:
hparams.target_vocab = hparams.source_vocab
else:
hparams.target_vocab = Vocabulary(hparams.target_vocab_file)
def example_length(example):
return tf.maximum(tf.size(example["source"]), tf.size(example["target"]))
def parse_record(example):
features = tf.parse_single_example(example, features={
'source': tf.VarLenFeature(tf.int64),
'target': tf.VarLenFeature(tf.int64)})
features = {
'source': tf.sparse.to_dense(features['source']),
'target': tf.sparse.to_dense(features['target']),}
return features
class InputPipeline:
def __init__(self, source_file, target_file, record_file, mode, hparams):
self.source_file = source_file
self.target_file = target_file
self.record_file = record_file
self.mode = mode
self.hparams = hparams
def _readlines(self):
if self.mode != tf.estimator.ModeKeys.PREDICT:
for s, t in zip(open(self.source_file), open(self.target_file)):
source = self.hparams.source_vocab.encode(s.strip())
target = self.hparams.target_vocab.encode(t.strip())
yield {'source': source, 'target': target}
else:
for s in open(self.source_file):
source = self.hparams.source_vocab.encode(s.strip())
yield {'source': source, 'target': []}
def _postprocess(self, features):
final_features = {
"sources": features["source"],
"targets": features["target"],
}
return final_features, {}
def __call__(self):
hparams = self.hparams
with tf.name_scope("input_pipeline"):
if self.mode != tf.estimator.ModeKeys.PREDICT:
dataset = tf.data.TFRecordDataset(self.record_file)
dataset = dataset.repeat()
dataset = dataset.shuffle(10000)
dataset = dataset.map(parse_record, num_parallel_calls=8)
if self.mode == tf.estimator.ModeKeys.TRAIN:
dataset = dataset.filter(lambda example: tf.logical_and(
tf.less_equal(tf.size(example["source"]), hparams.max_input_length),
tf.less_equal(tf.size(example["target"]), hparams.max_input_length)))
dataset = bucketing.bucket_by_sequence_length(
dataset,
hparams.batch_size,
example_length_fn=example_length)
dataset = dataset.map(
self._postprocess,
num_parallel_calls=8)
dataset = dataset.prefetch(buffer_size=1)
return dataset
else:
dataset = tf.data.Dataset.from_generator(
self._readlines,
{'source': tf.int32, 'target': tf.int32},
{'source': [None], 'target': [None]})
dataset = bucketing.padded_batch(
dataset, hparams.predict_batch_size)
iterator = dataset.make_one_shot_iterator()
features = iterator.get_next()
final_features = {
"sources": features["source"],
"targets": None,
}
return final_features, None