-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy path6.Rmd
779 lines (610 loc) · 27.5 KB
/
6.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
---
title: "Chapter 6: Posterior approximation with the Gibbs sampler"
author: "Jesse Mu"
date: "November 4, 2016"
output:
html_document:
highlight: pygments
toc: yes
toc_float: yes
---
<!-- Setup -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: {
equationNumbers: {
autoNumber: "all"
}
}
});
</script>
```{r echo=FALSE, message=FALSE}
knitr::opts_chunk$set(fig.align = 'center', message = FALSE)
library(knitr)
library(ggplot2)
library(cowplot)
library(reshape)
```
<!-- Begin writing -->
# A semiconjugate prior distribution
In Chapter 5, we performed two-parameter inference by decomposing the prior
$p(\theta, \sigma^2) = p(\theta \mid \sigma^2) p(\sigma^2)$. So our prior
distribution on $\theta$ relates to the variance $\sigma^2$:
$$
\theta \mid \sigma^2 \sim \mathcal{N}(\mu_0, \sigma^2 / \kappa_0)
$$
However, consider that we may want to decouple the priors of the two parameters.
This allows flexibility with specification of the prior (initial estimate and
confidence) of either parameter.
Consider the midge wing example: we picked a prior on $\theta$ that was centered
around 1.9 (our prior expectation) but with most of its mass above 0, since wing
lengths cannot be above 0. We can't freely do this from what we know in section
5 (i.e. setting $\tau_0^2 = \sigma^2 / \kappa_0$). Alternatively, we can set
$\tau_0^2$ to be whatever we want, but then there is no longer a known form of
the joint posterior
$$
p(\theta, \sigma^2 \mid y_1, \dots, y_n) \propto p(\theta, \sigma^2) \times p(y_1, \dots, y_n \mid \theta, \sigma^2)
$$
that can easily be sampled from. However, as it turns out, the full conditionals
$p(\theta \mid \sigma^2, y_1, \dots, y_n)$ and $p(\sigma^2 \mid \theta, y_1,
\dots, y_n)$ are easy to specify, as when evaluating the formulas, we can simply
disregard the other fixed parameter as a constant, leading to known posterior
distributions. A technicue called Gibbs sampling allows us to take advantage of
this by constructing a sampler that approximates the (unknown) joint
distribution by sampling iteratively from the (known) full conditional
distributions.
# Discrete approximations
Why posterior densities are hard to calculate for nonconjugate priors using
Bayes rule?
\begin{align}
p(\boldsymbol{\theta} \mid \mathbf{y}) &= \frac{p(\mathbf{y} \mid
\theta) p(\boldsymbol{\theta})}{\int p(\mathbf{y} \mid
\boldsymbol{\theta}') p(\boldsymbol{\theta}') \; d\boldsymbol{\theta}'}
\end{align}
The numerator here is often easy to calculate, but the denominator is often
prohibitively hard to compute. When the numerator is not known to be
proportional to a known probability distribution, we can't get the full joint
density without the denominator.
Notice however that we can still evaluate relative probabilites of
$\boldsymbol{\theta}_a$ and $\boldsymbol{\theta}_b$, as their ratio cancels out
the integral. More generally, we can create a discrete approximation of the
probabilities by evaluating the numerator of this density for values of
$\boldsymbol{\theta}$ across an $n$-dimensional grid, then dividing each of
these unnormalized densities by the sum of the entire grid.
Funnily, this is pretty much what I have been doing in the past chapters when
plotting heatmaps:
```{r}
y = c(1.64, 1.70, 1.72, 1.74, 1.82, 1.82, 1.82, 1.90, 2.08)
n = length(y)
ybar = mean(y)
s2 = var(y)
# Prior
mu0 = 1.9
# Tau chosen such that most of the mass of the normal distribution > 0
t20 = 0.95^2
s20 = 0.01
nu0 = 1
Theta = seq(1.505, 2, length = 100)
Sigma2 = seq(0.005, 0.05, length = 100)
# This calculates p(sigma2, theta, y_1, \dots, y_n)
library(invgamma)
post.func = Vectorize(function(theta, sigma2) {
dnorm(theta, mu0, sqrt(t20)) *
dinvgamma(sigma2, nu0 / 2, s20 * nu0 / 2) *
prod(dnorm(y, theta, sqrt(sigma2)))
})
d = outer(Theta, Sigma2, post.func)
rownames(d) = Theta
colnames(d) = Sigma2
d = d / sum(d)
df = melt(d)
colnames(df) = c('theta', 'sigma2', 'density')
ggplot(df, aes(x = theta, y = sigma2, z = density)) +
geom_contour(aes(color = ..level..))
```
# Sampling from the conditional distributions
Again, to proceed with Gibbs sampling, we simply need to calculate the full
conditional distributions of the parameters. We already computed the
full conditional for $\theta \mid \sigma^2, y_1, \dots, y_n$ in 5.2. For $\theta
\mid \mathcal{N}(\mu_0, \tau_0^2)$, then $\theta \mid \sigma^2, y_1, \dots, y_n
\sim \mathcal{N}(\mu_n, \tau_n^2)$, where $\mu_n$ and $\tau_n^2$ I will not
reproduce here (see 5.2).
Now we find the full conditional for $\sigma^2$ using the exact same method as in 5.2:
\begin{align}
p(\sigma^2 \mid \theta, y_1, \dots, y_n) &\propto
\left[(\sigma^2)^{-n/2} \text{exp}\left(-\frac{1}{2\sigma^2} \sum_{i = 1}^n (y_i - \theta)^2 \right) \right] \times \left[ (\sigma^2)^{- \nu_0 / 2 - 1} \text{exp} \left(-\frac{\sigma_0^2 \nu_0 / 2}{\sigma^2} \right) \right] \\
&\propto (\sigma^2)^{-(\nu_0 + 1) / 2 - 1} \times \text{exp}\left(-\frac{1}{\sigma^2} \times \frac{1}{2}\left(\sigma_0^2 \nu_0 + \sum_{i=1}^{n} (y_i - \theta)^2 \right) \right) \\
\end{align}
So $\sigma^2 \sim \text{inverse-gamma}(\nu_n / 2, \nu_n \sigma_n^2(\theta) /
2)$, and $\tilde{\sigma^2} \sim \text{gamma}(\cdot, \cdot))$, with the
parameters:
- $\nu_n = \nu_0 + n$
- $\sigma_n^2(\theta) = (\sigma_0^n \nu_0 + n s_n^2(\theta)) / \nu_n$
We denote $\sigma_n^2(\theta)$, $s_n^2(\theta)$ to indicate that $\sigma_n^2$ is
dependent on $\theta$ which is assumed known.
> A shortcut for thinking about full conditionals, instead of explicitly
decomposing the probability according to Bayes rule each time, is to write the
numerator of the full joint posterior $p(\boldsymbol{\theta} \mid \mathbf{y})$.
Then, if you are interested in the full conditional of $p(\theta_i \mid
\mathbf{y})$, simply evaluate the full joint posterior while treating all
$\theta_j$ for $j \neq i$ as constants (and thus discardable to maintain
proportionality). This is used in later chapters (e.g. 8.3.1)
# Gibbs sampling
From this, Gibbs sampling proceeds as follows:
Begin with start values $\theta_i^{(0)}$ for all $i$. Usually these can be
standard naive estimates of the parameters. Also, you technically only have to
have start values for *all but one* parameter, because now...
- (WOLOG) Sample $\theta_1^{(1)} \sim p(\theta_1 \mid \theta_2^{(0)}, \dots,
\theta_n^{(0)}, \dots)$ (the full conditional)
- Similarly, sample $\theta_2^{(1)} \sim p(\theta_2 \mid \dots)$, $\theta_3^{(1)} \sim p(\theta_3 \mid \dots)$.
- $\boldsymbol{\theta}^{(1)} = \begin{pmatrix} \theta_1^{(1)} & \cdots & \theta_n^{(1)} \end{pmatrix}$ is your first Gibbs sample.
- Given Gibbs sample $\boldsymbol{\theta}^{(s)}$, for further samples, sample
each $\theta_i^{(s + 1)}$ individually as before, conditioning on the
$\theta_i^{(s)}$ of the previous gibbs sampling $\boldsymbol{\theta}^{(s)}$$
*and* the new samples $\theta_i^{(s + 1)}$ as they are received. Then $\boldsymbol{\theta}^{(s + 1)} = \begin{pmatrix} \theta_1^{(s + 1)} & \cdots & \theta_n^{(s + 1)} \end{pmatrix}$ is the $s + 1$th Gibbs sample.
Notice that the $s + 1$th sample is only conditionally dependent on the $s$th
sample, hence the term "Markov Chain Monte Carlo".
Once these samples are obtained, you can treat them like a standard Monte Carlo
sample, and compute all of the desired quantities.
The following is an example for our midge length data:
```{r}
S = 1000
PHI = matrix(nrow = S, ncol = 2)
PHI[1, ] = phi = c(ybar, 1 / s2) # Start with sample mean + variance
set.seed(1) # Reproducibility
# Should use a for loop, as there are variables we need to keep track of through
# iterations
for (s in 2:S) {
# Sample theta based on \sigma^2 (phi[2])
# According to normal(\mu_n, \tau^2_n) where \mu_n and \tau^2_n are as below
mun = (mu0 / t20 + n * ybar * phi[2]) / (1/t20 + n * phi[2])
t2n = 1 / (1 / t20 + n * phi[2])
phi[1] = rnorm(1, mun, sqrt(t2n))
# Sample 1/sigma^2 based on \theta
nun = nu0 + n
s2n = (nu0 * s20 + (n - 1) * s2 + n * (ybar - phi[1])^2) / nun
# This posterior distribution: inverse-gamma(\nu_n / 2, \sigma^2_n(\theta)
# \nu_n / 2)
phi[2] = rgamma(1, nun / 2, s2n * nun / 2)
PHI[s, ] = phi
}
```
The following are plots of 5, 15, and 100 consecutive Gibbs samples for $\theta$ and $\tilde{\sigma^2}$:
```{r echo=FALSE}
phi.df = data.frame(PHI)
colnames(phi.df) = c('theta', '1/sigma^2')
phi.df$n = 1:nrow(phi.df)
fst = head(phi.df, n = 5)
fst$total = '5'
snd = head(phi.df, n = 15)
snd$total = '15'
thd = head(phi.df, n = 100)
thd$total = '100'
facets = rbind(fst, snd, thd)
facets$total = factor(facets$total, levels = c('5', '15', '100'))
ggplot(facets, aes(x = theta, y = `1/sigma^2`)) +
geom_text(aes(label = n)) +
geom_path(alpha = 0.5) +
facet_wrap(~ total)
```
This is the scatterplot of all 1000 of our Gibbs samples:
```{r}
ggplot(phi.df, aes(x = theta, y = `1/sigma^2`)) + geom_point()
```
Finally, some quantiles:
```{r}
# CI for population mean - first column is theta
quantile(PHI[, 1], c(0.025, 0.5, 0.975))
# CI for population precision, second column
quantile(PHI[, 2], c(0.025, 0.5, 0.975))
# CI for population stddev, arbitrary function of second column
quantile(1 / sqrt(PHI[, 2]), c(0.025, 0.5, 0.975))
# For later
midge.df = phi.df
```
# General properties of the Gibbs sampler
Under conditions that will be met for our models, like the law of large numbers
for standard monte carlo sampling, a sufficient number of Gibbs samples
approaches the target distribution. The question of course is how many samples
is enough, which is covered in the next section.
Another important point is that Gibbs sampling is not a Bayesian model. These
two concepts should be separated: Gibbs sampling is a general framework for
"observing" the posterior probability distribution, whatever that distribution
is.
# Introduction to MCMC diagnostics
For an example of the importance of assessing convergence of Gibbs sampling,
consider the following target distribution, a 45-10-45 mixture of
$\mathcal{N}(-3, 1/3), \mathcal{N}(0, 1/3), \mathcal{N}(3, 1/3)$:
```{r echo=FALSE}
# Params
PROB.DENS = c(0.45, 0.10, 0.45)
MU.DENS = c(-3, 0, 3)
S2.DENS = c(1/3, 1/3, 1/3)
# Calculating the actual density
ddens = function(n) {
PROB.DENS[1] * dnorm(n, MU.DENS[1], sqrt(S2.DENS[1])) +
PROB.DENS[2] * dnorm(n, MU.DENS[2], sqrt(S2.DENS[2])) +
PROB.DENS[3] * dnorm(n, MU.DENS[3], sqrt(S2.DENS[3]))
}
theta.dist = data.frame(
theta = seq(-6, 6, length = 500),
density = ddens(seq(-6, 6, length = 500))
)
# Monte carlo approximation
rdens = function(n) {
# Monte carlo approximation: sample a delta, then sample according to the
# associated normal
Delta = sample.int(3, size = n, prob = PROB.DENS, replace = TRUE)
rnorm(n, MU.DENS[Delta], sqrt(S2.DENS[Delta]))
}
theta.mc = data.frame(theta = rdens(1000))
ggplot(theta.dist, aes(x = theta, y = density)) +
geom_histogram(mapping = aes(x = theta, y = ..density..), data = theta.mc,
color = 'black', fill = 'grey') +
geom_line()
```
A Gibbs sampler to obtain samples from this is:
```{r}
# Gibbs sampling with S = 1000
S = 1000
PHI = matrix(nrow = S, ncol = 2)
# Let delta0 = 2 and theta0 = 0
PHI[1, ] = phi = c(2, 0)
set.seed(1) # Reproducibility
# Should use a for loop, as there are variables we need to keep track of through
# iterations
for (s in 2:S) {
# Sample delta s+1 based on theta s
probs = sapply(1:3, function(d) {
PROB.DENS[d] * dnorm(phi[2], MU.DENS[d], sqrt(S2.DENS[d]))
})
probs = probs / sum(probs)
phi[1] = sample.int(3, size = 1, prob = probs)
# Sample theta s+1 based on delta (easy)
phi[2] = rnorm(1, MU.DENS[phi[1]], sqrt(S2.DENS[phi[1]]))
PHI[s, ] = phi
}
theta.mcmc = data.frame(PHI)
colnames(theta.mcmc) = c('delta', 'theta')
theta.mcmc$iteration = 1:nrow(theta.mcmc)
# How well does this work?
ggplot(theta.dist, aes(x = theta, y = density)) +
geom_histogram(mapping = aes(x = theta, y = ..density..), data = theta.mcmc,
color = 'black', fill = 'grey') +
geom_line()
# Traceplot
ggplot(theta.mcmc, aes(x = iteration, y = theta)) +
geom_point() +
geom_line(alpha = 0.25)
```
Notice that the histogram does not adequately approximate the distribution. Try
changing the number of samples to 10000 or 100000, which should be better.
The problem is that since the sampler generates dependent samples, the sampler
sticks in high probability regions for a long time. After sufficient samples,
this balances out, but sometimes the number of samples required may be very
large.
### Getting it right
Estimate of MCMC depends on autocorrelation: how correlated a chain of values is
with itself. We prefer low correlation values. The `acf` function can be used to assess this: each bar represents the autocorrelation for varying levels of lag, where "lag" is the gap in subsequent samples.
```{r}
acf(theta.mcmc$theta, lag.max = 50)
```
Another thing we can do is obtain the "effective sample size" of the MCMC
sample. This exploits the fact that with $n$ samples of a value $\theta$ the following
\begin{align}
\text{Var}_{\text{MCMC}}(\bar{\theta}) = \frac{\text{Var}(\theta)}{n}
\end{align}
only holds if the autocorrelation of the samples is zero. If there is positive
autocorrelation in the samples, the variance of the sample mean increases, which
"reduces" $n$. So by obtaining estimates of the variance of the population (by
estimating the variance of the sample) and estimates of the variance of the
mean, we can solve for $n$ which is an "effective sample size".
Estimating the variance of the mean, given that we cannot assume an independent
sample, is nontrivial, and requires calculating the [spectral density estimate
at frequency zero](http://faculty.arts.ubc.ca/vmarmer/econ627/627_10_02.pdf)
which is "a convenient way to represent the sequence of autocovariances" of a
stochastic process, and is related to 1) autocorrelation, and 2) Fourier transformation.
This is implemented as the `effectiveSize` function in R, which abridged looks
like this:
```{r}
library(coda)
myEffectiveSize = function(x) {
spec = spectrum0.ar(x)$spec
ifelse(spec == 0, 0, length(x) * var(x)/spec)
}
```
```{r}
effectiveSize(theta.mcmc$theta)
myEffectiveSize(theta.mcmc$theta)
```
### MCMC diagnostics for semiconjugate normal analysis
Back to midge length. Here are the traceplots for our samples of theta and sigma^2:
```{r}
midge.df$iteration = midge.df$n
ggplot(midge.df, aes(x = iteration, y = theta)) +
geom_point() + geom_line(alpha = 0.25)
ggplot(midge.df, aes(x = iteration, y = `1/sigma^2`)) +
geom_point() + geom_line(alpha = 0.25)
```
By viewing the autocorrelation function and effective sample sizes of our data,
we can see that the samples look quite good and seem to have reasonable effective sample sizes.
```{r}
acf(midge.df$theta)
effectiveSize(midge.df$theta)
acf(midge.df$`1/sigma^2`)
effectiveSize(midge.df$`1/sigma^2`)
```
# Exercises
## 6.1
### a
$$
\begin{align}
\text{Cov}(\theta_A, \theta_B) &= \mathbb{E}\left[\theta_A \theta_B\right] - \mathbb{E}[\theta_A]\mathbb{E}[\theta_B] \\
&= \mathbb{E}[\theta^2\gamma] - \mathbb{E}[\theta] \mathbb{E}[\theta\gamma] \\
&= \mathbb{E}\left[\theta^2\right] \mathbb{E}\left[ \gamma \right] - \mathbb{E}[\theta]\mathbb{E}[\theta]\mathbb{E}[\gamma] & \theta \perp \gamma \\
&= \mathbb{E}\left[\theta^2\right] \mathbb{E}\left[ \gamma \right] - \mathbb{E}[\theta]^2\mathbb{E}[\gamma] \\
&= \left(\mathbb{E}[\theta^2] - \mathbb{E}[\theta]^2 \right) \mathbb{E}[\gamma] \\
&= \text{Var}(\theta) \mathbb{E}[\gamma] \\
&\neq 0
\end{align}
$$
Since $\text{Cov}(\theta_A, \theta_B) \neq 0$, $\theta_A$ and $\theta_B$ are
dependent.
This prior is justified if we have reason to believe that $\theta_B$ is some
product of $\theta_A$ plus random Gamma-distributed noise.
### b
First the joint posterior distribution
$$
\begin{align}
p(\theta, \gamma \mid \boldsymbol{y}_A, \boldsymbol{y}_B)
&\propto p(\theta, \gamma) \times p(\boldsymbol{y}_A, \boldsymbol{y}_B \mid \theta, \gamma) \\
&= p(\theta) \times p(\gamma) \times p(\boldsymbol{y}_A \mid \theta) \times p(\boldsymbol{y}_B \mid \theta, \gamma) & \boldsymbol{y}_A \perp \gamma \\
&\propto \left(\theta^{a_\theta - 1}e^{-b_\theta \theta}\right) \times \left(\gamma^{a_\gamma - 1}e^{-b_\gamma \gamma} \right) \times \left(\prod_{i=1}^{n_{A}} \theta^{y_{A_i}} e^{-\theta} \right) \times \left(\prod_{i=1}^{n_{B}} (\gamma \theta)^{y_{B_i}} e^{-\gamma \theta} \right) \\
&= \left(\theta^{a_\theta - 1}e^{-b_\theta \theta}\right) \times \left(\gamma^{a_\gamma - 1}e^{-b_\gamma \gamma} \right) \times \left( \theta^{\sum_{i = 1}^{n_A} y_{A_i}} e^{-n_A \theta} \right) \times \left( (\gamma \theta)^{\sum_{i=1}^{n_B} y_{B_i}} e^{- n_B \gamma \theta} \right) \\
&= \left(\theta^{a_\theta - 1}e^{-b_\theta \theta}\right) \times \left(\gamma^{a_\gamma - 1}e^{-b_\gamma \gamma} \right) \times \left( \theta^{n_A \bar{y}_A} e^{-n_A \theta} \right) \times \left( (\gamma \theta)^{n_B \bar{y}_B} e^{- n_B \gamma \theta} \right) \\
\end{align}
$$
So
$$
\begin{align}
p(\theta, \mid \boldsymbol{y}_A, \boldsymbol{y}_B, \gamma)
&\propto \left(\theta^{a_\theta - 1}e^{-b_\theta \theta}\right) \times \left(\gamma^{a_\gamma - 1}e^{-b_\gamma \gamma} \right) \times \left( \theta^{n_A \bar{y}_A} e^{-n_A \theta} \right) \times \left( (\gamma \theta)^{n_B \bar{y}_B} e^{- n_B \gamma \theta} \right) \\
&\propto \left(\theta^{a_\theta - 1}e^{-b_\theta \theta}\right) \times \left( \theta^{n_A \bar{y}_A} e^{-n_A \theta} \right) \times \left( (\gamma \theta)^{n_B \bar{y}_B} e^{- n_B \gamma \theta} \right) \\
&\propto \theta^{a_\theta + n_A \bar{y}_A + n_B \bar{y}_B - 1} \exp \left( - (b_\theta + n_A + n_B \gamma ) \theta \right) \\
&\propto \text{dgamma}\left(a_\theta + n_A \bar{y}_A + n_B \bar{y}_B, b_\theta + n_A + n_B \gamma \right)
\end{align}
$$
### c
$$
\begin{align}
p(\gamma, \mid \boldsymbol{y}_A, \boldsymbol{y}_B, \theta)
&\propto \left(\theta^{a_\theta - 1}e^{-b_\theta \theta}\right) \times \left(\gamma^{a_\gamma - 1}e^{-b_\gamma \gamma} \right) \times \left( \theta^{n_A \bar{y}_A} e^{-n_A \theta} \right) \times \left( (\gamma \theta)^{n_B \bar{y}_B} e^{- n_B \gamma \theta} \right) \\
&\propto \left(\gamma^{a_\gamma - 1}e^{-b_\gamma \gamma} \right) \times \left( (\gamma \theta)^{n_B \bar{y}_B} e^{- n_B \gamma \theta} \right) \\
&\propto \left(\gamma^{a_\gamma - 1}e^{-b_\gamma \gamma} \right) \times \left( \gamma^{n_B \bar{y}_B} e^{- n_B \gamma \theta} \right) \\
&\propto \gamma^{a_\gamma + n_B \bar{y}_B - 1} \exp\left( -(b_\gamma + n_B \theta) \gamma \right) \\
&\propto \text{dgamma}\left(a_\gamma + n_B\bar{y}_B, b_\gamma + n_B \theta \right)
\end{align}
$$
### d
```{r}
Y_a <- scan(url('http://www.stat.washington.edu/~pdhoff/Book/Data/hwdata/menchild30bach.dat'))
Y_b <- scan(url('http://www.stat.washington.edu/~pdhoff/Book/Data/hwdata/menchild30nobach.dat'))
n_a = length(Y_a)
n_b = length(Y_b)
ybar_a = mean(Y_a)
ybar_b = mean(Y_b)
a_theta = 2
b_theta = 1
S = 5000
ab_gamma = c(8, 16, 32, 64, 128)
theta_diff = sapply(ab_gamma, function(abg) {
a_gamma = b_gamma = abg
THETA = numeric(S)
GAMMA = numeric(S)
# Starting values
theta = ybar_a
gamma = ybar_a / ybar_b # Relative rate \theta_B / \theta_A
for (s in 1:S) {
# Sample theta \text{dgamma}\left(a_\theta + n_A \bar{y}_A + n_B \bar{y}_B, b_\theta + n_A + n_B \gamma \right)
theta = rgamma(
1,
a_theta + n_a * ybar_a + n_b * ybar_b,
b_theta + n_a + n_b * gamma
)
# Sample gamma from \text{dgamma}\left(a_\gamma + n_B\bar{y}_B, b_\gamma + n_B \theta \right)
gamma = rgamma(
1,
a_gamma + n_b * ybar_b,
b_gamma + n_b * theta
)
THETA[s] = theta
GAMMA[s] = gamma
}
# Reconstruct \theta_A, \theta_B
THETA_A = THETA
THETA_B = THETA * GAMMA
mean(THETA_B - THETA_A)
})
ggplot(data.frame(ab_gamma = ab_gamma, theta_diff = theta_diff), aes(x = ab_gamma, y = theta_diff)) +
geom_point() +
geom_line()
```
Since $a_\gamma$ and $b_\gamma$ are equal, the gamma distribution is centered
around 1 and the magnitude represents the strength of our belief that $\gamma$
(the proportion $\theta_B / \theta_A$) is 1. As expected, as our belief in that
increases, the mean posterior difference between $\theta_B$ and $\theta_A$
decreases.
## 6.2
```{r}
glucose <- scan(url('http://www.stat.washington.edu/~pdhoff/Book/Data/hwdata/glucose.dat'))
```
### a
```{r}
qplot(glucose, geom = 'histogram')
```
Appears to be skewed right significantly.
### b
The likelihood is
$$
\begin{align}
p(\boldsymbol{y} \mid \boldsymbol{x}, p, \theta_1, \theta_2, \sigma^2_1, \sigma^2_2) &=
\prod_{i = 1}^n p(y_i \mid x_i, p, \theta_1, \theta_2, \sigma^2_1, \sigma^2_2) \\
&= \prod_{i = 1}^n \text{dnorm}(y_i, \theta_1, \sigma^2_1)^{x_i} \text{dnorm}(y_i, \theta_2, \sigma^2_2)^{1 - x_i} \\
\end{align}
$$
#### $\boldsymbol{x}$
First observe the probability that a single $X_i = 1$:
$$
\begin{align}
P(X_i = 1 \mid y_i, p, \theta_1, \theta_2, \sigma^2_1, \sigma^2_2) &= \frac{P(X_i = 1 \mid p, \theta_1, \theta_2, \sigma^2_1, \sigma^2_2) \times p(y_i \mid X_i = 1, p, \theta_1, \theta_2, \sigma^2_1, \sigma^2_2)}{P(y_i \mid p, \theta_1, \theta_2, \sigma^2_1, \sigma^2_2)} \\
&=
\frac{P(X_i = 1 \mid p) \times p(y_i \mid X_i = 1, \theta_1, \sigma^2_1)}{P(X_i = 1 \mid p) \times p(y_i \mid X_i = 1, \theta_1, \sigma^2_1) + P(X_i = 0 \mid p) \times p(y_i \mid X_i = 0, \theta_2, \sigma^2_2)} \\
&= \frac{p \times \text{dnorm}(y_i, \theta_1, \sigma^2_1)}{p \times \text{dnorm}(y_i, \theta_1, \sigma^2_1) + (1 - p) \times \text{dnorm}(y_i, \theta_2, \sigma^2_2)}
\end{align}
$$
Since this is similar for $P(X_i = 0)$, we know
$$
x_i \sim \text{Bernoulli}\left(\frac{p \times \text{dnorm}(y_i, \theta_1, \sigma^2_1)}{p \times \text{dnorm}(y_i, \theta_1, \sigma^2_1) + (1 - p) \times \text{dnorm}(y_i, \theta_2, \sigma^2_2)}\right)
$$
#### $p$
For this and later calculations, let $n_1 = \sum x_i$ (i.e. number of 1s in
$\boldsymbol{x}$) and $n_2 = n - n_1$ (i.e. number of 0s).
$$
\begin{align}
p(p \mid \boldsymbol{x}, \boldsymbol{y}, \theta_1, \theta_2, \sigma^2_1, \sigma^2_2) &\propto p(p) \times p(\boldsymbol{x}, \boldsymbol{y}, \theta_1, \theta_2, \sigma^2_1, \sigma^2_2 \mid p) \\
&\propto p(p) \times p(\boldsymbol{x} \mid p) p(\boldsymbol{y} \mid \boldsymbol{x}, \theta_1, \theta_2, \sigma^2_1, \sigma^2_2) p(\theta_1, \theta_2, \sigma^2_1, \sigma^2_2) \\
&\propto p(p) \times p(\boldsymbol{x} \mid p) \\
&\propto \text{dbeta}(p, a, b) \times \text{dbinom}(n_1, n, p) \\
&\propto p^{a - 1} (1 - p)^{b - 1} \times p^{n_1} (1 - p)^{n_2} \\
&= p^{a + n_1 - 1}(1 - p)^{b + n_2 - 1} \\
&= \text{dbeta}(p, a + n_1, b + n_2)
\end{align}
$$
#### $\theta_1$
Let $\boldsymbol{y}_1 = \{y_i \in \boldsymbol{y} \; : \; x_i = 1 \}$ and
$\boldsymbol{y}_2 = \{y_i \in \boldsymbol{y} \; : \; x_i = 0 \}$
$$
\begin{align}
p(\theta_1 \mid \boldsymbol{x}, \boldsymbol{y}, p, \theta_2, \sigma^2_1, \sigma^2_2) &\propto p(\theta_1 \mid \boldsymbol{x}, p, \theta_2, \sigma^2_1, \sigma^2_2) \times p(\boldsymbol{y} \mid \boldsymbol{x}, p, \theta_1, \theta_2, \sigma^2_1, \sigma^2_2) \\
&\propto p(\theta_1) \times \prod_{i=1}^n \left( \text{dnorm}(y_i, \theta_1, \sigma^2_1)^{x_i} \text{dnorm}(y_i, \theta_2, \sigma^2_2)^{1 - x_i} \right) \\
&\propto \text{dnorm}(\theta_1, \mu_0, \tau^2_0) \times \prod_{i = 1}^n \text{dnorm}(y_i, \theta_1, \sigma^2_1)^{x_i} \\
&\propto \text{dnorm}(\theta_1, \mu_0, \tau^2_0) \times \prod_{y \in \boldsymbol{y}_1} \text{dnorm}(y, \theta_1, \sigma^2_1) \\
&\propto \exp \left(- \frac{1}{2 \tau^2_0} (\theta_1 - \mu_0)^2 \right) \times \prod_{y \in \boldsymbol{y}_1} \exp\left( -\frac{1}{2\sigma^2_1} (y - \theta_1)^2\right) \\
&\propto \exp \left(- \frac{1}{2 \tau^2_0} (\theta_1 - \mu_0)^2 \right) \times \exp\left(-\frac{1}{2\sigma^2_1} \sum_{y \in \boldsymbol{y}_1} (y - \theta_1)^2 \right) \\
&\propto \text{calculations from 5.2...} \\
&\propto \mathcal{N}(\tau^2_{n , 1}, \mu_{n, 1})
\end{align}
$$
where
$$
\begin{align}
\tau^2_{n, 1} &= \frac{1}{\frac{1}{\tau^2_0} + \frac{n_1}{\sigma^2_1}} \\
\mu_{n, 1} &= \frac{\frac{1}{\tau^2_0}\mu_0 + \frac{n_1}{\sigma^2_1} \bar{y}_{\cdot, 1}}{\frac{1}{\tau^2_0} + \frac{n_1}{\sigma^2_1}}
\end{align}
$$
#### $\theta_2$
$\theta_2 \mid \dots \sim \mathcal{N}(\mu_{n, 2}, \tau^2_{n, 2})$ like
$\theta_1$ but with the subscripts switched from 1 to 2.
#### $\sigma^2_1$
As probably expected, this will look like inference for a standard normal model,
except using only the data in group 1.
$$
\begin{align}
p(\sigma^2_1 \mid \boldsymbol{x}, \boldsymbol{y}, p, \theta_1, \theta_2, \sigma^2_2) &\propto p(\sigma^2_1 \mid \boldsymbol{x}, p, \theta_1, \theta_2, \sigma^2_2) \times p(\boldsymbol{y} \mid \boldsymbol{x}, p, \theta_1, \theta_2, \sigma^2_1, \sigma^2_2) \\
&\propto p(\sigma^2_1) \times \prod_{i=1}^n \left( \text{dnorm}(y_i, \theta_1, \sigma^2_1)^{x_i} \text{dnorm}(y_i, \theta_2, \sigma^2_2)^{1 - x_i} \right) \\
&\propto \text{inverse-gamma}(\sigma^2_1, \nu_0, \sigma^2_0 \nu_0 / 2) \times \prod_{y \in \boldsymbol{y}_1} \text{dnorm}(y, \theta_1, \sigma^2_1) \\
&\propto \exp \left((\sigma_1^2)^{-(\nu_0 / 2) - 1} \exp\left( -\frac{1}{\sigma^2_1} \sigma^2_0 \nu_0 / 2 \right) \right) \times (\sigma_1^2)^{-n / 2} \exp\left(-\frac{1}{2\sigma^2_1} \sum_{y \in \boldsymbol{y}_1} (y - \theta_1)^2 \right) \\
&\propto \text{calculations from 6.3...} \\
&\propto \text{inverse-gamma}(\nu_{n, 1} / 2, \sigma^2_{n, 1}(\theta_1) \nu_{n, 1} / 2)
\end{align}
$$
where
$$
\begin{align}
\nu_{n, 1} &= \nu_0 + n_1 \\
\sigma^2_{n, 1}(\theta_1) &= \frac{1}{\nu_{n, 1}} \left[\nu_0 \sigma^2_0 + n_1 s^2_{n, 1}(\theta_1) \right]
\end{align}
$$
#### $\sigma^2_2$
Same as above, but with subscripts switched.
### c
```{r}
Y = glucose
n = length(Y)
# Priors
a = b = 1
mu0 = 120
t20 = 200
s20 = 1000
nu0 = 10
S = 10000
# Values we'd like to store. Don't care about xs, p, sigmas
THETA1 = numeric(S)
THETA2 = numeric(S)
YPRED = numeric(S) # Posterior predictive
# Starting values
p = 0.5
theta1 = theta2 = mean(Y)
s21 = s22 = var(Y)
# Gibbs sampling
for (s in 1:S) {
# Sample X
# We calculate dnorm for each y so p1 and p2 are vectors
p1 = p * dnorm(Y, theta1, sqrt(s21))
p2 = (1 - p) * dnorm(Y, theta2, sqrt(s22))
bernoulli_p = p1 / (p1 + p2)
X = rbinom(n, 1, bernoulli_p)
# With X sample, calcuate group-specific summary statistics
n1 = sum(X)
n2 = n - n1
y1 = Y[X == 1]
y2 = Y[X == 0]
ybar1 = mean(y1)
ybar2 = mean(y2)
yvar1 = var(y1)
yvar2 = var(y2)
# Sample p
p = rbeta(1, a + n1, b + n2)
# Sample thetas
t2n1 = 1 / (1 / t20 + n1 / s21)
mun1 = (mu0 / t20 + n1 * ybar1 / s21) / (1 / t20 + n1 / s21)
theta1 = rnorm(1, mun1, sqrt(t2n1))
t2n2 = 1 / (1 / t20 + n2 / s22)
mun2 = (mu0 / t20 + n2 * ybar2 / s22) / (1 / t20 + n2 / s22)
theta2 = rnorm(1, mun2, sqrt(t2n2))
# Sample sigma^2s
nun1 = nu0 + n1
s2n1 = (nu0 * s20 + (n1 - 1) * yvar1 + n1 * (ybar1 - theta1)^2) / nun1
s21 = 1 / rgamma(1, nun1 / 2, s2n1 * nun1 / 2)
nun2 = nu0 + n2
s2n2 = (nu0 * s20 + (n2 - 1) * yvar2 + n2 * (ybar2 - theta2)^2) / nun2
s22 = 1 / rgamma(1, nun2 / 2, s2n2 * nun2 / 2)
# Sample posterior predictive
xpred = runif(1) < p
ypred = ifelse(xpred, rnorm(1, theta1, sqrt(s21)), rnorm(1, theta2, sqrt(s22)))
# Store values
THETA1[s] = theta1
THETA2[s] = theta2
YPRED[s] = ypred
}
```
```{r}
THETAMIN = pmin(THETA1, THETA2)
THETAMAX = pmax(THETA1, THETA2)
library(coda)
acf(THETAMIN)
effectiveSize(THETAMIN)
acf(THETAMAX)
effectiveSize(THETAMAX)
```
These samples are actually highly autocorrelated, hence the minimum effective
sample sizes. But I'm not sure (?) the purpose of calculating the
autocorrelation of the minimum and maximum $\theta$?
### d
```{r}
YCOMP = rbind(data.frame(y = YPRED, dataset = 'predictive'), data.frame(y = Y, dataset = 'original'))
ggplot(YCOMP, aes(x = y, fill = dataset)) +
geom_density(alpha = 0.5)
```
Based on the very close correspondence with the densities of the original and
posterior predictive dataset, it seems like this mixture model fits very well.