-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathgis2triangle_kd.py
executable file
·428 lines (372 loc) · 14.6 KB
/
gis2triangle_kd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
#!/usr/bin/env python3
#
#+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!
# #
# gis2triangle_kd.py #
# #
#+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!
#
# Author: Pat Prodanovic, Ph.D., P.Eng.
#
# Date: June 29, 2015
#
# Purpose: Script takes in a text file of the geometry generated in qgis
# (or any other gis or cad package) and produces geometry files used by
# the triangle mesh generator program (i.e., it writes *.poly geometry
# file for use in triangle mesh generator. This script parallels my
# gis2gmsh.py script.
#
# Same as gis2triangle.py, except that it uses kd tree searching algorithm
# for node searching. This is far superior than my node searching algorithm!
#
# Revised: Feb 20, 2016
# Made it work for python 2 and 3
#
# Revised: Nov 12, 2016
# Changed the format of the holes file from holesid,x,y to x,y.
#
# Revised: Nov 13, 2016
# Changed how the script searches for points. Got rid of
# tree.query_ball_point(), and replaced it with tree.query(). This has
# the effect of speeding up computations significantly!
#
# Revised: Nov 21, 2016
# Changed KDTree to cKDTree to improve performance.
#
# Revised: Nov 23, 2016
# For some test cases cKDTree crashed, while KDTree went to completion.
# Therefore, revert back to using KDTree instead.
#
# Revised: Dec 10, 2016
# Changed how the script searches for duplicate nodes. Previously a
# duplicate node was considered one that had (x,y,z) values that were
# identical. This meant that two nodes at the same location in (x,y)
# space could exist, and would have two different z values. This was
# eliminated by keeping only unique (x,y) values, and assigning a z
# value to the unique nodes via KDTree search mechanism. This change
# did not cause cKDTree to crash, so it was used in the script.
#
# Uses: Python 2 or 3, Numpy
#
# Example:
#
# python gis2triangle.py -n nodes.csv -b boundary.csv -l lines.csv -o out.poly
#
# where:
# --> -n is the file listing of all nodes (incl. embedded nodes
# if any). The nodes file consist of x,y,z or x,y,z,size;
# The size parameter is an optional input, and is used
# by gmsh as an extra parameter that forces element
# size around a particular node. For triangle, it has
# no meaning. The nodes file must be comma separated, and
# have no header lines.
#
# --> -b is the node listing of the outer boundary for the mesh.
# The boundary file is generated by snapping lines
# to the nodes from the nodes.csv file. The boundary file
# consists of shapeid,x,y of all the lines in the file.
# Boundary has to be a closed shape, where first and last
# nodes are identical. Shapeid is a integer, where the
# boundary is defined with a distict id (i.e., shapeid
# of 0).
#
# --> -l is the node listing of the constraint lines for the mesh.
# The lines file can include open or closed polylines.
# The file listing has shapeid,x,y, where x,y have to
# reasonable match that of the nodes.csv file. Each distinct
# line has to have an individual (integer) shapeid. If no
# constraint lines in the mesh, enter 'none' without the
# quotes.
#
# --> -h is the listing of the holes in the mesh. The holes file is
# generated by placing a single node marker inside a
# closed line constraint. The holes file must include a
# x,y within the hole. If no holes (islands) in the mesh,
# enter 'none' without the quotes. Note that for triangle,
# the format of the holes file is different than for gmsh!!!
#
# --> -o is the output triangle geometry. To generate the mesh, run:
# $ ./triangle out.poly
# or use any one of triangle's command line switches.
#
# --> -d is an optional flag to ignore removal of duplicate nodes in the
# nodes file. By default, duplicate nodes are removed
# from the nodes.csv file, and the user need not set
# this flag.
#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Global Imports
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
import os,sys # system parameters
import numpy as np # numpy
from collections import OrderedDict # for removal of duplicate nodes
from scipy import spatial # kd tree for searching coords
from progressbar import ProgressBar, Bar, Percentage, ETA
from ppmodules.utilities import *
#
# I/O
if len(sys.argv) == 11 :
dummy1 = sys.argv[1]
nodes_file = sys.argv[2]
dummy2 = sys.argv[3]
boundary_file = sys.argv[4]
dummy3 = sys.argv[5]
lines_file = sys.argv[6]
dummy4 = sys.argv[7]
holes_file = sys.argv[8]
dummy5 = sys.argv[9]
output_file = sys.argv[10]
dummy6 = ' '
duplicates_flag = 1 # removal of duplicate nodes is on by default
elif (len(sys.argv) == 13):
dummy1 = sys.argv[1]
nodes_file = sys.argv[2]
dummy2 = sys.argv[3]
boundary_file = sys.argv[4]
dummy3 = sys.argv[5]
lines_file = sys.argv[6]
dummy4 = sys.argv[7]
holes_file = sys.argv[8]
dummy5 = sys.argv[9]
output_file = sys.argv[10]
dummy6 = sys.argv[11]
duplicates_flag = sys.argv[12]
else:
print('Wrong number of Arguments, stopping now...')
print('Usage:')
print('python gis2triangle.py -n nodes.csv -b boundary.csv -l lines.csv -h holes.csv -o out.poly')
#print 'or, if wanting to turn off duplicate removal algorithm'
#print 'python gis2triangle.py -n nodes.csv -b boundary.csv -l lines.csv -h holes.csv -o out.poly -d 0'
sys.exit()
# find out if the nodes file is x,y,z or x,y,x,size
with open(nodes_file, 'r') as f:
line = next(f) # read 1 line
n_attr = len(line.split(','))
# to create the output file
fout = open(output_file,"w")
# use numpy to read the file
# each column in the file is a row in data read by no.loadtxt method
nodes_data = np.loadtxt(nodes_file, delimiter=',',skiprows=0,unpack=True)
boundary_data = np.loadtxt(boundary_file, delimiter=',',skiprows=0,unpack=True)
if (lines_file != 'none'):
lines_data = np.loadtxt(lines_file, delimiter=',',skiprows=0,unpack=True)
if (holes_file != 'none'):
holes_data = np.loadtxt(holes_file, delimiter=',',skiprows=0,unpack=True)
# master nodes in the file (from the nodes file)
x = nodes_data[0,:]
y = nodes_data[1,:]
z = nodes_data[2,:]
if (n_attr == 4):
size = nodes_data[3,:]
else:
size = np.zeros(len(x))
# to check for duplicate nodes
# crop all the points to three decimals only
x = np.around(x,decimals=3)
y = np.around(y,decimals=3)
z = np.around(z,decimals=3)
size = np.around(size,decimals=3)
# this is a method from ppmodules/utilities.py that removes duplicates
if (duplicates_flag == 1):
x,y,z = remove_duplicate_nodes(x,y,z)
# n is the number of nodes
n = len(x)
# creates node numbers from the nodes file
node = np.zeros(n,dtype=np.int32)
# when I made the change to python 3, had to use np.column_stack
# http://stackoverflow.com/questions/28551279/error-running-scipy-kdtree-example
# to create the tuples of the master points
points = np.column_stack((x,y))
tree = spatial.cKDTree(points)
# if node is part of boundary or lines, then it is not embedded
is_node_emb = np.zeros(n,dtype=np.int32)
for i in range(0,n):
node[i] = i+1
is_node_emb[i] = 1
# boundary data
shapeid_bnd = boundary_data[0,:]
x_bnd = boundary_data[1,:]
y_bnd = boundary_data[2,:]
# round boundary nodes to three decimals
x_bnd = np.around(x_bnd,decimals=3)
y_bnd = np.around(y_bnd,decimals=3)
# number of nodes in the boundary file
n_bnd = len(x_bnd)
# count lines from boundary lines
count_bnd = 0
# lines data
if (lines_file != 'none'):
shapeid_lns = lines_data[0,:]
x_lns = lines_data[1,:]
y_lns = lines_data[2,:]
# round lines nodes to three decimals
x_lns = np.around(x_lns,decimals=3)
y_lns = np.around(y_lns,decimals=3)
# number of nodes in the lines file
n_lns = len(x_lns)
count_lns = 0
# writes *.poly geometry file for use in triangle mesh generator
# writes the *.poly header data for nodes
fout.write(str(n) + " " + str("2 1 0") + "\n")
# writes the nodes in triangle format
for i in range(0,n):
fout.write(str(i+1) + " " + str("{:.3f}".format(x[i])) +
str(" ") + str("{:.3f}".format(y[i])) + str(" ") +
str("{:.3f}".format(z[i])) + "\n")
############################################################################
# BOUNDARY LINES
# index of the minimum, for each boundary node
minidx = np.zeros(n_bnd,dtype=np.int32)
# distance between each boundary node and node in the master nodes file
# write the boundary in gmsh format
for i in range(0,n_bnd-1):
if (i == 0) :
#fout.write("Line(" + str(i+1) + str(") = {") + str(node[minidx[0]])
# + str(", ") + str(node[minidx[1]]) + str("};") + "\n")
count_bnd =count_bnd +1
else:
#fout.write("Line(" + str(i+1) + str(") = {") + str(node[minidx[i]])
# + str(", ") + str(node[minidx[i+1]]) + str("};") + "\n")
count_bnd =count_bnd +1
# the lines numbering continues from the boundary numbering
count_lns = count_bnd + 1
# CONSTRAINT LINES
if (lines_file != 'none'):
# index for the minimum, for each lines node
minidx_lns = np.zeros(n_lns,dtype=np.int32)
# distance between each lines node and node in the master nodes file
dist_lns = np.zeros(n)
cur_lns_shapeid = shapeid_lns[0]
prev_lns_shapeid = shapeid_lns[0]
# write the constraint lines
for i in range(0,n_lns-1):
if (i>0):
cur_lns_shapeid = shapeid_lns[i]
prev_lns_shapeid = shapeid_lns[i-1]
if (cur_lns_shapeid - prev_lns_shapeid < 0.001):
#if (node[minidx_lns[i-1]] != node[minidx_lns[i]]):
#fout.write(str(cur_lns_shapeid) + " " + str(prev_lns_shapeid) + " ")
#fout.write("Line(" + str(count_lns) + str(") = {") +
# str(node[minidx_lns[i-1]]) + str(", ") + str(node[minidx_lns[i]]) + str("};") + "\n")
count_lns = count_lns + 1
############################################################################
# this is really inefficient, but all of the loops above (between ####) are
# simply to count the number of lines in the file (boundary nodes and
# constraint lines together.
# this is a cheating way to do this, but it will have to do for now.
# discovered through debug testing
if (lines_file == 'none'):
fout.write(str(count_lns-1) + " 0" + "\n")
else:
fout.write(str(count_lns) + " 0" + "\n")
# now repeat the loops between the #### are write the lines (boundary and
# constraint)
count_bnd = 0
count_lns = 0
############################################################################
# BOUNDARY LINES
print('Assigning z values to each boundary vertex ...')
# index of the minimum, for each boundary node
minidx = np.zeros(n_bnd,dtype=np.int32) -1
pt_bnd = list()
for i in range(0,n_bnd):
pt_bnd.append(x_bnd[i])
pt_bnd.append(y_bnd[i])
# find the index of the min point
d,minidx_temp = tree.query(pt_bnd, 1)
minidx[i] = minidx_temp
if (minidx[i] < 0):
print('Python outputs a negative index ... converting to positive')
print('Negative index of ', minidx[i], ' converted to')
minidx[i] = minidx[i] * -1 + 1
print(minidx[i], '\n')
#fout.write(str(i) + " " + str(minidx[i]) + "\n")
# fill in the is_node_emb array
is_node_emb[minidx[i]] = 0
# remove the node to search for
pt_bnd.remove(x_bnd[i])
pt_bnd.remove(y_bnd[i])
# write the boundary in triangle format
for i in range(0,n_bnd-1):
if (i == 0) :
fout.write(str(i+1) + str(" ") + str(node[minidx[0]])
+ str(" ") + str(node[minidx[1]]) + "\n")
count_bnd =count_bnd +1
else:
fout.write(str(i+1) + str(" ") + str(node[minidx[i]])
+ str(" ") + str(node[minidx[i+1]]) + "\n")
count_bnd =count_bnd +1
# the lines numbering continues from the boundary numbering
count_lns = count_bnd + 1
# CONSTRAINT LINES
print('Assigning z values to each breakline vertex ...')
if (lines_file != 'none'):
w = [Percentage(), Bar(), ETA()]
pbar = ProgressBar(widgets=w, maxval=n_lns).start()
# index for the minimum, for each lines node
minidx_lns = np.zeros(n_lns,dtype=np.int32) - 1
pt_lns = list()
for i in range(0,n_lns):
pt_lns.append(x_lns[i])
pt_lns.append(y_lns[i])
# find the index of each lines point
d, minidx_lns_temp = tree.query(pt_lns, 1)
minidx_lns[i] = minidx_lns_temp
#fout.write(str(i) + " " + str(minidx_lns[i]) + "\n")
# fill in the is_node_emb array
is_node_emb[minidx_lns[i]] = 0
# to remove the node to search for
pt_lns.remove(x_lns[i])
pt_lns.remove(y_lns[i])
# update the pbar
pbar.update(i+1)
cur_lns_shapeid = shapeid_lns[0]
prev_lns_shapeid = shapeid_lns[0]
pbar.finish()
# write the constraint lines
for i in range(0,n_lns):
if (i>0):
cur_lns_shapeid = shapeid_lns[i]
prev_lns_shapeid = shapeid_lns[i-1]
if (cur_lns_shapeid - prev_lns_shapeid < 0.001):
#if (node[minidx_lns[i-1]] != node[minidx_lns[i]]):
#fout.write(str(cur_lns_shapeid) + " " + str(prev_lns_shapeid) + " ")
fout.write(str(count_lns) + str(" ") +
str(node[minidx_lns[i-1]]) + str(" ") + str(node[minidx_lns[i]])+ "\n")
count_lns = count_lns + 1
############################################################################
# lastly, write the holes
print('Writing holes data ...')
# holes data
if (holes_file != 'none'):
# find out how many holes
n_hls = len(open(holes_file).readlines())
# counters for hole points
shapeid_hls1 = -1
shapeid_hls = -1
if (n_hls == 1):
master = list()
with open(holes_file, 'r') as f:
for line in f:
master.append(line)
tmp = master[0].split(',')
shapeid_hls1 = shapeid_hls1 + 1
x_hls1 = float(tmp[0])
y_hls1 = float(tmp[1])
fout.write(str(n_hls) + '\n')
fout.write(str(shapeid_hls1) + ' ' + str(x_hls1) + ' ' + str(y_hls1) + '\n')
else:
#shapeid_hls = holes_data[0,:]
#shapeid_hls =shapeid_hls.astype(np.int32)
x_hls = holes_data[0,:]
y_hls = holes_data[1,:]
# round lines nodes to three decimals
x_hls = np.around(x_hls,decimals=3)
y_hls = np.around(y_hls,decimals=3)
#n_hls = len(x_hls)
fout.write(str(n_hls) + '\n')
for i in range(n_hls):
shapeid_hls = shapeid_hls + 1
fout.write(str(shapeid_hls) + ' ' + str(x_hls[i]) + ' ' + str(y_hls[i]) + '\n')
else:
fout.write(str(0))