-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathSWANxyz2slf.py
executable file
·160 lines (133 loc) · 5 KB
/
SWANxyz2slf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/env python3
#
#+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!
# #
# SWANxyz2slf.py #
# #
#+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!
#
# Author: Pat Prodanovic, Ph.D., P.Eng.
#
# Date: February 26, 2016
#
# Purpose: Script takes in a *.xyz file, and an existing *.slf file, and
# interpolates the *.xyz data to the mesh provided in the *.slf file. Right
# now it assumes that the xyz file is for one timestep only and has the
# variables x,y,depth,hsig,tp,dir (no header); dir is in NAUT convention.
# To manage a full wave library, to make a script SWANxyzLib2slf.py.
#
# Uses: Python 2 or 3, Matplotlib, Numpy
#
# Example:
#
# python SWANxyz2slf.py -i swan_results.xyz -m mesh.slf -o swan_results.slf
# where:
# -i *.xyz file, no header
# -m mesh file in *.slf format
# -o output mesh_file, with interpolated data from xyz file
#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Global Imports
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
import os,sys
import matplotlib.tri as mtri
import numpy as np
from ppmodules.selafin_io_pp import *
#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# MAIN
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
curdir = os.getcwd()
#
# I/O
if len(sys.argv) != 7 :
print('Wrong number of Arguments, stopping now...')
print('Usage:')
print('python SWANxyz2slf.py -i out.xyz -m mesh.slf -o mesh_interp.slf')
sys.exit()
dummy1 = sys.argv[1]
xyz_file = sys.argv[2]
dummy2 = sys.argv[3]
mesh_file = sys.argv[4]
dummy3 = sys.argv[5]
output_file = sys.argv[6] # interp_mesh
# read the mesh.slf file
# constructor for pp_SELAFIN class
slf = ppSELAFIN(mesh_file)
slf.readHeader()
slf.readTimes()
# get the properties from the *.slf mesh file
NELEM, NPOIN, NDP, IKLE, IPOBO, x, y = slf.getMesh()
# get the precision of the slf input file
ftype,fsize = slf.getPrecision()
##########################################################################
# Read the xyz file using pure python and stores into a numpy array.
# I am not loving doing string searches for the missing values.
# But np.genfromtxt also uses strings for missing values.
# store file contents into a master list
master = list()
with open(xyz_file, 'r') as f:
for line in f:
# searches each line in the file. when it finds a line that does not
# having missing values, it appends it to the master list
# this way, we have only valid values in the master list
if ((not line.find('-0.990000000E+02') > -1) and \
(not line.find('-0.900000000E+01') > -1) and \
(not line.find('-0.999000000E+03') > -1 )):
master.append(line)
f.close()
# determine how many data points in xyz file
numpts = len(master)
# determine how many variables there are in the xyz data
# now, it assumes x,y,depth,hsig,tp,dir
numvars = len(master[0].split())
# store it all as a master numpy array
swan_data = np.zeros((numvars,numpts))
for i in range(numpts):
temp = master[i].split()
swan_data[:,i] = np.asarray(temp)
# to add a row to an existing array
#np.concatenate((A,newrow), axis=0)
# to delete the first row from an existing array
#np.delete(x,(0), axis=0)
##########################################################################
# gets the x and y data from the xyz file
xx = swan_data[0,:]
yy = swan_data[1,:]
# initialize the interpolated data numpy array
slf_data = np.zeros((numvars,NPOIN))
# create an mtri triangulation object using swan_data positions
triang = mtri.Triangulation(xx,yy)
# interpolate to the slf_data positions
for i in range(2,numvars):
interpolator = mtri.LinearTriInterpolator(triang,swan_data[i,:])
slf_data[i,:] = interpolator(x,y)
# find where the slf_data are np.nan
slf_nans=np.isnan(slf_data)
# go through each variable in the slf_data, and if it is nan, then replace
# it with the closest not nan data from the swan_data array
for i in range(numvars):
for j in range(NPOIN):
if (slf_nans[i,j] == True):
xdist = np.subtract(xx,x[j])
ydist = np.subtract(yy,y[j])
dist = np.sqrt(np.power(xdist,2.0) + np.power(ydist,2.0))
minidx = np.argmin(dist)
slf_data[i,j] = swan_data[i,minidx]
# ignores the swan_data x and y variables, and retains depth,hsig,tp,dir
slf_data_red = slf_data[2:,:]
# now we are ready to store the variables into the *.slf array
# assume the varnames and varunits are
varnames = ['DEPTH ','WAVE HEIGHT ',\
'WAVE PERIOD ','WAVE DIRECTION ']
varunits = ['M ','M ',\
'SEC ','DEG ']
out = ppSELAFIN(output_file)
out.setPrecision(ftype,fsize)
out.setTitle('created with pputils')
out.setVarNames(varnames)
out.setVarUnits(varunits)
out.setIPARAM([1, 0, 0, 0, 0, 0, 0, 0, 0, 1])
out.setMesh(NELEM, NPOIN, NDP, IKLE, IPOBO, x, y)
out.writeHeader()
out.writeVariables(0.0, slf_data_red)