-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathtrain.py
225 lines (186 loc) · 11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import matplotlib.pyplot as plot
import torch
from torch import nn
from torch.nn.utils.rnn import pack_padded_sequence
from torch.utils.data import DataLoader
from model.constants import *
def train(dataset, model, name):
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
train_size = int(TRAIN_VALIDATION_SPLIT * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False)
ce_loss = nn.CrossEntropyLoss(reduction='none')
l1_loss = nn.L1Loss(reduction='mean')
model = model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE, weight_decay=WEIGHT_DECAY)
epochs = []
train_losses_chords, train_losses_melodies, train_losses_kl, train_accs_chords, train_accs_melodies = [], [], [], [], []
val_losses_chords, val_losses_melodies, val_losses_kl, val_accs_chords, val_accs_melodies = [], [], [], [], []
# losses for one batch of data
def compute_loss(data):
if name == "lyrics2lofi":
embeddings = data["embedding"].to(device)
embedding_lengths = data["embedding_length"]
num_chords = data["num_chords"]
max_num_chords = num_chords.max()
max_num_notes = max_num_chords * NOTES_PER_CHORD
chords_gt = data["chords"].to(device)[:, :max_num_chords]
notes_gt = data["melody_notes"].to(device)[:, :max_num_notes]
tempo_gt = data["tempo"].to(device)
key_gt = data["key"].to(device)
mode_gt = data["mode"].to(device)
valence_gt = data["valence"].to(device)
energy_gt = data["energy"].to(device)
# run model
if name == "lyrics2lofi":
input = pack_padded_sequence(embeddings, embedding_lengths, batch_first=True, enforce_sorted=False)
pred_chords, pred_notes, pred_tempo, pred_key, pred_mode, pred_valence, pred_energy, kl = \
model(input, max_num_chords, sampling_rate_chords, sampling_rate_melodies, chords_gt, notes_gt)
else:
pred_chords, pred_notes, pred_tempo, pred_key, pred_mode, pred_valence, pred_energy, kl = \
model(chords_gt, notes_gt, tempo_gt, key_gt, mode_gt, valence_gt, energy_gt, num_chords, max_num_chords,
sampling_rate_chords, sampling_rate_melodies)
# compute a boolean mask to select entries up to a specific index
def compute_mask(max_length, curr_length):
arange = torch.arange(max_length, device=device).repeat((chords_gt.shape[0], 1)).permute(0, 1)
lengths_stacked = curr_length.repeat((max_length, 1)).permute(1, 0)
return arange <= lengths_stacked
num_chords = num_chords.to(device)
loss_chords = ce_loss(pred_chords.permute(0, 2, 1), chords_gt)
mask_chord = compute_mask(max_num_chords, num_chords)
loss_chords = torch.masked_select(loss_chords, mask_chord).mean()
num_notes = num_chords * NOTES_PER_CHORD
loss_melody_notes = ce_loss(pred_notes.permute(0, 2, 1), notes_gt)
mask_melody = compute_mask(max_num_notes, num_notes)
loss_melody = torch.masked_select(loss_melody_notes, mask_melody).mean()
if epoch < MELODY_EPOCH_DELAY:
loss_melody = 0
loss_kl = kl
loss_tempo = l1_loss(pred_tempo[:, 0], tempo_gt) / 5
loss_key = ce_loss(pred_key, key_gt).mean() / 30
loss_mode = ce_loss(pred_mode, mode_gt).mean() / 10
loss_valence = l1_loss(pred_valence[:, 0], valence_gt) / 5
loss_energy = l1_loss(pred_energy[:, 0], energy_gt) / 5
loss_total = loss_chords + loss_kl + loss_melody + loss_tempo + loss_key + loss_mode + loss_energy + loss_valence
tp_chords = torch.masked_select(pred_chords.argmax(dim=2) == chords_gt, mask_chord).tolist()
tp_melodies = torch.masked_select(pred_notes.argmax(dim=2) == notes_gt, mask_melody).tolist()
return loss_total, loss_chords, loss_kl, loss_melody, loss_tempo, loss_key, loss_mode, loss_valence, loss_energy, tp_chords, tp_melodies
print(f"Starting training: {name}")
epoch = 0
while True:
epochs.append(epoch)
print(f"== Epoch {epoch} ==")
ep_train_losses_chords, ep_train_losses_melodies, ep_train_losses_kl, ep_train_tp_chords, ep_train_tp_melodies = [], [], [], [], []
ep_val_losses_chords, ep_val_losses_melodies, ep_val_losses_kl, ep_val_tp_chords, ep_val_tp_melodies = [], [], [], [], []
sampling_rate_chords = 0
sampling_rate_melodies = 0
if TEACHER_FORCE:
sampling_rate_chords = sampling_rate_at_epoch(epoch)
sampling_rate_melodies = sampling_rate_at_epoch(epoch - MELODY_EPOCH_DELAY)
print(f"Scheduled sampling rate: C {sampling_rate_chords}, M {sampling_rate_melodies}")
# TRAINING
model.train()
for batch, data in enumerate(train_dataloader):
loss, loss_chords, kl_loss, loss_melody, \
loss_tempo, loss_key, loss_mode, loss_valence, loss_energy, \
batch_tp_chords, batch_tp_melodies = compute_loss(data)
ep_train_losses_chords.append(loss_chords)
ep_train_losses_melodies.append(loss_melody)
ep_train_losses_kl.append(kl_loss)
ep_train_tp_chords.extend(batch_tp_chords)
ep_train_tp_melodies.extend(batch_tp_melodies)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss = loss.item()
print(f"\tBatch {batch}:\tLoss {loss:.3f} (C: {loss_chords:.3f} + KL: {kl_loss:.3f} + "
f"M: {loss_melody:.3f} + T: {loss_tempo:.3f} + K: {loss_key:.3f} + Mo: {loss_mode:.3f} + "
f"V: {loss_valence:.3f} + E: {loss_energy:.3f})")
# VALIDATION
model.eval()
for batch, data in enumerate(val_dataloader):
with torch.no_grad():
loss, loss_chords, kl_loss, loss_melody, \
loss_tempo, loss_key, loss_mode, loss_valence, loss_energy, \
batch_tp_chords, batch_tp_melodies = compute_loss(data)
ep_val_losses_chords.append(loss_chords)
ep_val_losses_melodies.append(loss_melody)
ep_val_losses_kl.append(kl_loss)
ep_val_tp_chords.extend(batch_tp_chords)
ep_val_tp_melodies.extend(batch_tp_melodies)
print(f"\tValidation Batch {batch}:\tLoss {loss:.3f} (C: {loss_chords:.3f} + KL: {kl_loss:.3f} + "
f"M: {loss_melody:.3f} + T: {loss_tempo:.3f} + K: {loss_key:.3f} + Mo: {loss_mode:.3f} + "
f"V: {loss_valence:.3f} + E: {loss_energy:.3f})")
# copy old model
save_name = f"{name}-epoch{epoch}.pth" if epoch % 10 == 0 else f"{name}.pth"
decoder_save_name = f"{name}-decoder-epoch{epoch}.pth" if epoch % 10 == 0 else f"{name}-decoder.pth"
torch.save(model.state_dict(), save_name)
torch.save(model.decoder.state_dict(), decoder_save_name)
epoch += 1
ep_train_loss_chord = sum(ep_train_losses_chords) / len(ep_train_losses_chords)
ep_train_loss_melody = sum(ep_train_losses_melodies) / len(ep_train_losses_melodies)
ep_train_loss_kl = sum(ep_train_losses_kl) / len(ep_train_losses_kl)
ep_train_chord_acc = (sum(ep_train_tp_chords) / len(ep_train_tp_chords)) * 100
ep_train_melody_acc = (sum(ep_train_tp_melodies) / len(ep_train_tp_melodies)) * 100
ep_val_loss_chord = sum(ep_val_losses_chords) / len(ep_val_losses_chords)
ep_val_loss_melody = sum(ep_val_losses_melodies) / len(ep_val_losses_melodies)
ep_val_loss_kl = sum(ep_val_losses_kl) / len(ep_val_losses_kl)
ep_val_chord_acc = (sum(ep_val_tp_chords) / len(ep_val_tp_chords)) * 100
ep_val_melody_acc = (sum(ep_val_tp_melodies) / len(ep_val_tp_melodies)) * 100
print(
f"Epoch chord loss: {ep_train_loss_chord:.3f}, melody loss: {ep_train_loss_melody:.3f}, KL: {ep_train_loss_kl:.3f}, "
f"chord accuracy: {ep_train_chord_acc:.3f}, melody accuracy: {ep_train_melody_acc:.3f}")
print(
f"VALIDATION: epoch chord loss: {ep_val_loss_chord:.3f}, melody loss: {ep_val_loss_melody:.3f}, KL: {ep_val_loss_kl:.3f}, "
f"chord accuracy: {ep_val_chord_acc:.3f}, melody accuracy: {ep_val_melody_acc:.3f}")
train_losses_chords.append(ep_train_loss_chord)
train_losses_melodies.append(ep_train_loss_melody)
train_losses_kl.append(ep_train_loss_kl)
train_accs_chords.append(ep_train_chord_acc)
train_accs_melodies.append(ep_train_melody_acc)
val_losses_chords.append(ep_val_loss_chord)
val_losses_melodies.append(ep_val_loss_melody)
val_losses_kl.append(ep_val_loss_kl)
val_accs_chords.append(ep_val_chord_acc)
val_accs_melodies.append(ep_val_melody_acc)
fig, axs = plot.subplots(2, 2, figsize=(8, 4.5), dpi=200)
# Chords loss
axs[0, 0].set_title('Chords loss')
axs[0, 0].plot(epochs, train_losses_chords, label='Train', color='royalblue')
axs[0, 0].plot(epochs, val_losses_chords, label='Val', color='royalblue', linestyle='dotted')
axs[0, 0].set_xlabel('Epochs')
axs[0, 0].set_ylabel('Loss')
axs[0, 0].legend()
axs[0, 0].grid(True)
# Chords accuracy
axs[1, 0].set_title('Chords accuracy')
axs[1, 0].plot(epochs, train_accs_chords, label='Train', color='darkorange')
axs[1, 0].plot(epochs, val_accs_chords, label='Val', color='darkorange', linestyle='dotted')
axs[1, 0].set_xlabel('Epochs')
axs[1, 0].set_ylabel('Accuracy (%)')
axs[1, 0].set_ylim(bottom=0)
axs[1, 0].legend()
axs[1, 0].grid(True)
# Melody loss
axs[0, 1].set_title('Melody loss')
axs[0, 1].plot(epochs, train_losses_melodies, label='Train', color='royalblue')
axs[0, 1].plot(epochs, val_losses_melodies, label='Val', color='royalblue', linestyle='dotted')
axs[0, 1].set_xlabel('Epochs')
axs[0, 1].set_ylabel('Loss')
axs[0, 1].legend()
axs[0, 1].grid(True)
# Melody accuracy
axs[1, 1].set_title('Melody accuracy')
axs[1, 1].plot(epochs, train_accs_melodies, label='Train', color='darkorange')
axs[1, 1].plot(epochs, val_accs_melodies, label='Val', color='darkorange', linestyle='dotted')
axs[1, 1].set_xlabel('Epochs')
axs[1, 1].set_ylabel('Accuracy (%)')
axs[1, 1].set_ylim(bottom=0)
axs[1, 1].legend()
axs[1, 1].grid(True)
plot.tight_layout()
plot.savefig(f"{name}.png")
plot.show()