-
Notifications
You must be signed in to change notification settings - Fork 257
/
Copy pathtrain_variational_autoencoder_pytorch.py
282 lines (240 loc) · 9.79 KB
/
train_variational_autoencoder_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""Train variational autoencoder on binary MNIST data."""
import numpy as np
import random
import time
import torch
import torch.utils
import torch.utils.data
from torch import nn
import data
import flow
import argparse
import pathlib
def add_args(parser):
parser.add_argument("--latent_size", type=int, default=128)
parser.add_argument("--variational", choices=["flow", "mean-field"])
parser.add_argument("--flow_depth", type=int, default=2)
parser.add_argument("--data_size", type=int, default=784)
parser.add_argument("--learning_rate", type=float, default=0.001)
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--test_batch_size", type=int, default=512)
parser.add_argument("--max_iterations", type=int, default=30000)
parser.add_argument("--log_interval", type=int, default=10000)
parser.add_argument("--n_samples", type=int, default=1000)
parser.add_argument("--use_gpu", action="store_true")
parser.add_argument("--seed", type=int, default=582838)
parser.add_argument("--train_dir", type=pathlib.Path, default="/tmp")
parser.add_argument("--data_dir", type=pathlib.Path, default="/tmp")
class Model(nn.Module):
"""Variational autoencoder, parameterized by a generative network."""
def __init__(self, latent_size, data_size):
super().__init__()
self.register_buffer("p_z_loc", torch.zeros(latent_size))
self.register_buffer("p_z_scale", torch.ones(latent_size))
self.log_p_z = NormalLogProb()
self.log_p_x = BernoulliLogProb()
self.generative_network = NeuralNetwork(
input_size=latent_size, output_size=data_size, hidden_size=latent_size * 2
)
def forward(self, z, x):
"""Return log probability of model."""
log_p_z = self.log_p_z(self.p_z_loc, self.p_z_scale, z).sum(-1, keepdim=True)
logits = self.generative_network(z)
# unsqueeze sample dimension
logits, x = torch.broadcast_tensors(logits, x.unsqueeze(1))
log_p_x = self.log_p_x(logits, x).sum(-1, keepdim=True)
return log_p_z + log_p_x
class VariationalMeanField(nn.Module):
"""Approximate posterior parameterized by an inference network."""
def __init__(self, latent_size, data_size):
super().__init__()
self.inference_network = NeuralNetwork(
input_size=data_size,
output_size=latent_size * 2,
hidden_size=latent_size * 2,
)
self.log_q_z = NormalLogProb()
self.softplus = nn.Softplus()
def forward(self, x, n_samples=1):
"""Return sample of latent variable and log prob."""
loc, scale_arg = torch.chunk(
self.inference_network(x).unsqueeze(1), chunks=2, dim=-1
)
scale = self.softplus(scale_arg)
eps = torch.randn((loc.shape[0], n_samples, loc.shape[-1]), device=loc.device)
z = loc + scale * eps # reparameterization
log_q_z = self.log_q_z(loc, scale, z).sum(-1, keepdim=True)
return z, log_q_z
class VariationalFlow(nn.Module):
"""Approximate posterior parameterized by a flow (https://arxiv.org/abs/1606.04934)."""
def __init__(self, latent_size, data_size, flow_depth):
super().__init__()
hidden_size = latent_size * 2
self.inference_network = NeuralNetwork(
input_size=data_size,
# loc, scale, and context
output_size=latent_size * 3,
hidden_size=hidden_size,
)
modules = []
for _ in range(flow_depth):
modules.append(
flow.InverseAutoregressiveFlow(
num_input=latent_size,
num_hidden=hidden_size,
num_context=latent_size,
)
)
modules.append(flow.Reverse(latent_size))
self.q_z_flow = flow.FlowSequential(*modules)
self.log_q_z_0 = NormalLogProb()
self.softplus = nn.Softplus()
def forward(self, x, n_samples=1):
"""Return sample of latent variable and log prob."""
loc, scale_arg, h = torch.chunk(
self.inference_network(x).unsqueeze(1), chunks=3, dim=-1
)
scale = self.softplus(scale_arg)
eps = torch.randn((loc.shape[0], n_samples, loc.shape[-1]), device=loc.device)
z_0 = loc + scale * eps # reparameterization
log_q_z_0 = self.log_q_z_0(loc, scale, z_0)
z_T, log_q_z_flow = self.q_z_flow(z_0, context=h)
log_q_z = (log_q_z_0 + log_q_z_flow).sum(-1, keepdim=True)
return z_T, log_q_z
class NeuralNetwork(nn.Module):
def __init__(self, input_size, output_size, hidden_size):
super().__init__()
modules = [
nn.Linear(input_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, output_size),
]
self.net = nn.Sequential(*modules)
def forward(self, input):
return self.net(input)
class NormalLogProb(nn.Module):
def __init__(self):
super().__init__()
def forward(self, loc, scale, z):
var = torch.pow(scale, 2)
return -0.5 * torch.log(2 * np.pi * var) - torch.pow(z - loc, 2) / (2 * var)
class BernoulliLogProb(nn.Module):
def __init__(self):
super().__init__()
self.bce_with_logits = nn.BCEWithLogitsLoss(reduction="none")
def forward(self, logits, target):
# bernoulli log prob is equivalent to negative binary cross entropy
return -self.bce_with_logits(logits, target)
def cycle(iterable):
while True:
for x in iterable:
yield x
@torch.no_grad()
def evaluate(n_samples, model, variational, eval_data):
model.eval()
total_log_p_x = 0.0
total_elbo = 0.0
for batch in eval_data:
x = batch[0].to(next(model.parameters()).device)
z, log_q_z = variational(x, n_samples)
log_p_x_and_z = model(z, x)
# importance sampling of approximate marginal likelihood with q(z)
# as the proposal, and logsumexp in the sample dimension
elbo = log_p_x_and_z - log_q_z
log_p_x = torch.logsumexp(elbo, dim=1) - np.log(n_samples)
# average over sample dimension, sum over minibatch
total_elbo += elbo.cpu().numpy().mean(1).sum()
# sum over minibatch
total_log_p_x += log_p_x.cpu().numpy().sum()
n_data = len(eval_data.dataset)
return total_elbo / n_data, total_log_p_x / n_data
if __name__ == "__main__":
start_time = time.time()
parser = argparse.ArgumentParser()
add_args(parser)
cfg = parser.parse_args()
device = torch.device("cuda:0" if cfg.use_gpu else "cpu")
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
random.seed(cfg.seed)
model = Model(latent_size=cfg.latent_size, data_size=cfg.data_size)
if cfg.variational == "flow":
variational = VariationalFlow(
latent_size=cfg.latent_size,
data_size=cfg.data_size,
flow_depth=cfg.flow_depth,
)
elif cfg.variational == "mean-field":
variational = VariationalMeanField(
latent_size=cfg.latent_size, data_size=cfg.data_size
)
else:
raise ValueError(
"Variational distribution not implemented: %s" % cfg.variational
)
model.to(device)
variational.to(device)
optimizer = torch.optim.RMSprop(
list(model.parameters()) + list(variational.parameters()),
lr=cfg.learning_rate,
centered=True,
)
fname = cfg.data_dir / "binary_mnist.h5"
if not fname.exists():
print("Downloading binary MNIST data...")
data.download_binary_mnist(fname)
train_data, valid_data, test_data = data.load_binary_mnist(
fname, cfg.batch_size, cfg.test_batch_size, cfg.use_gpu
)
best_valid_elbo = -np.inf
num_no_improvement = 0
train_ds = cycle(train_data)
t0 = time.time()
for step in range(cfg.max_iterations):
batch = next(train_ds)
x = batch[0].to(device)
model.zero_grad()
variational.zero_grad()
z, log_q_z = variational(x, n_samples=1)
log_p_x_and_z = model(z, x)
# average over sample dimension
elbo = (log_p_x_and_z - log_q_z).mean(1)
# sum over batch dimension
loss = -elbo.sum(0)
loss.backward()
optimizer.step()
if step % cfg.log_interval == 0:
t1 = time.time()
examples_per_sec = cfg.log_interval * cfg.batch_size / (t1 - t0)
with torch.no_grad():
valid_elbo, valid_log_p_x = evaluate(
cfg.n_samples, model, variational, valid_data
)
print(
f"Step {step:<10d}\t"
f"Train ELBO estimate: {elbo.detach().cpu().numpy().mean():<5.3f}\t"
f"Validation ELBO estimate: {valid_elbo:<5.3f}\t"
f"Validation log p(x) estimate: {valid_log_p_x:<5.3f}\t"
f"Speed: {examples_per_sec:<5.2e} examples/s"
)
if valid_elbo > best_valid_elbo:
num_no_improvement = 0
best_valid_elbo = valid_elbo
states = {
"model": model.state_dict(),
"variational": variational.state_dict(),
}
torch.save(states, cfg.train_dir / "best_state_dict")
t0 = t1
checkpoint = torch.load(cfg.train_dir / "best_state_dict")
model.load_state_dict(checkpoint["model"])
variational.load_state_dict(checkpoint["variational"])
test_elbo, test_log_p_x = evaluate(cfg.n_samples, model, variational, test_data)
print(
f"Step {step:<10d}\t"
f"Test ELBO estimate: {test_elbo:<5.3f}\t"
f"Test log p(x) estimate: {test_log_p_x:<5.3f}\t"
)
print(f"Total time: {(time.time() - start_time) / 60:.2f} minutes")