-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtree-traversal.c
126 lines (115 loc) · 2.49 KB
/
tree-traversal.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
/*
关于二叉树的3种遍历,主要算法写在最前,剩下的只写了构造二叉搜索树的
标准函数,不是重点。也去除了相关注释,如果不理解二叉搜索树请看之前的
二叉搜索树代码。
遍历全部使用了递归,可以画图来理解这种算法。
*/
#include<stdlib.h>
#include<stdio.h>
#include<malloc.h>
typedef int ElemType;
typedef struct SearchTree {
ElemType data;
int times;
struct TreeNode *Left;
struct TreeNode *Right;
}TreeNode, *Root;
void printElemtype(Root root) {
printf("%d ", root->data);
}
// 先序遍历
void Preorder_traversal(Root root) {
if (root) {
Preorder_traversal(root->Left);
printElemtype(root);
Preorder_traversal(root->Right);
}
}
// 中序遍历
void Order_traversal(Root root) {
if (root) {
printElemtype(root);
Order_traversal(root->Left);
Order_traversal(root->Right);
}
}
// 后序遍历
void Posterior_traversal(Root root) {
if (root) {
Posterior_traversal(root->Left);
Posterior_traversal(root->Right);
printElemtype(root);
}
}
void InitSearchTree(Root *root) {
*root = (Root)malloc(sizeof(TreeNode));
if (!(*root)) {
exit(0);
}
(*root)->times = 0;
(*root)->data = NULL;
(*root)->Left = NULL;
(*root)->Right = NULL;
}
int isEmpty(Root root) {
if (root->data) {
return 0;
}
else {
return 1;
}
}
void InsertSearchTree(Root root, ElemType data) {
if (isEmpty(root)) {
root->data = data;
}
if (data - root->data == 0) {
root->times++;
}
else {
if (data - root->data > 0) {
if (root->Right == NULL) {
Root newNode = (Root)malloc(sizeof(Root));
newNode->data = data;
newNode->times = 1;
newNode->Left = NULL;
newNode->Right = NULL;
root->Right = newNode;
}
else {
InsertSearchTree(root->Right, data);
}
}
else {
if (root->Left == NULL) {
Root newNode = (Root)malloc(sizeof(Root));
newNode->data = data;
newNode->times = 1;
newNode->Left = NULL;
newNode->Right = NULL;
root->Left = newNode;
}
else {
InsertSearchTree(root->Left, data);
}
}
}
}
int main() {
Root search_tree;
InitSearchTree(&search_tree);
InsertSearchTree(search_tree, 6);
InsertSearchTree(search_tree, 2);
InsertSearchTree(search_tree, 8);
InsertSearchTree(search_tree, 1);
InsertSearchTree(search_tree, 5);
InsertSearchTree(search_tree, 3);
InsertSearchTree(search_tree, 4);
Preorder_traversal(search_tree);
printf("\n");
Order_traversal(search_tree);
printf("\n");
Posterior_traversal(search_tree);
system("pause");
return 0;
}