diff --git a/ObsCoreExtensionForRadioData.tex b/ObsCoreExtensionForRadioData.tex index beceb11..435c0c5 100644 --- a/ObsCoreExtensionForRadioData.tex +++ b/ObsCoreExtensionForRadioData.tex @@ -335,9 +335,9 @@ \subsection{spatial parameters} \emph{s\_resolution\_best, s\_resolution\_worse} are estimated like the typical value (see subsection \ref{sec:res}) where $\lambda$ is replaced respectively by the minimum and maximum wavelength of the spectral range(s). The size D is the telescope diameter for SD observations and the largest distance in the \emph{uv} plane for interferometry. Beam forming may represent an exception to this rule, see \ref{sec:res}. -In the case of interferometry, we introduce the new \emph{s\_maximum\_angular\_scale} which is estimated as $\lambda/l$ where $\lambda$ is the typical +In the case of interferometry, we introduce the new \emph{s\_largest\_angular\_scale} which is estimated as $\lambda/l$ where $\lambda$ is the typical wavelength (and again typical value SHOULD be estimated as the mid value of the spectral range apart from documented exceptions) and l is the typical smallest distance in the \emph{uv} plane. This parameter is not relevant for other observation modes. -The maximum angular scale is also variable along the spectral range. That's why we bound it with \emph{s\_maximum\_angular\_scale\_min} and \emph{s\_maximum\_angular\_scale\_max} estimated as respectively $\lambda\_min/l$ and $\lambda\_max/l$ +The largest angular scale is also variable along the spectral range. That's why we bound it with \emph{s\_largest\_angular\_scale\_min} and \emph{s\_largest\_angular\_scale\_max} estimated as respectively $\lambda\_min/l$ and $\lambda\_max/l$ @@ -539,11 +539,11 @@ \section{The ivoa.obscore\_radio table} \sptablerule \texttt{s\_fov\_max}&\texttt{field of view diameter, max value, min frequency dependant}&\texttt{Char.SpatialAxis.\newline Coverage.Bounds.\newline Extent.HiLim}&{phys.angSize;instr.fov;\newline stat.max}°&radio\cr \sptablerule -\texttt{s\_maximum\_angular\_scale}&\texttt{maximum scale in dataset, shortest baseline and for typical frequency}&\texttt{Char.SpatialAxis.\newline Resolution.Scale.\newline Limits.HiLim}&{phys.angSize;stat.max}&arcsec&interferometry\cr +\texttt{s\_largest\_angular\_scale}&\texttt{maximum scale in dataset, shortest baseline and for typical frequency}&\texttt{Char.SpatialAxis.\newline Resolution.Scale.\newline Limits.HiLim}&{phys.angSize;stat.max}&arcsec&interferometry\cr \sptablerule -\texttt{s\_maximum\_angular\_scale\_min}&\texttt{smallest maximum scale in dataset, shortest baseline and for highest frequency}&\texttt{Char.SpatialAxis.\newline Resolution.Scale.\newline Limits.HiLim.Low}&{phys.angSize;stat.max}&arcsec&interferometry\cr +\texttt{s\_largest\_angular\_scale\_min}&\texttt{smallest maximum scale in dataset, shortest baseline and for highest frequency}&\texttt{Char.SpatialAxis.\newline Resolution.Scale.\newline Limits.HiLim.Low}&{phys.angSize;stat.max}&arcsec&interferometry\cr \sptablerule -\texttt{s\_maximum\_angular\_scale\_max}&\texttt{largest maximum scale in dataset, shortest baseline and for lowest frequency}&\texttt{Char.SpatialAxis.\newline Resolution.Scale.\newline Limits.HiLim.Hi}&{phys.angSize;stat.max}&arcsec&interferometry\cr +\texttt{s\_largest\_angular\_scale\_max}&\texttt{largest maximum scale in dataset, shortest baseline and for lowest frequency}&\texttt{Char.SpatialAxis.\newline Resolution.Scale.\newline Limits.HiLim.Hi}&{phys.angSize;stat.max}&arcsec&interferometry\cr \sptablerule %\texttt{f\_min}&\texttt{spectral coverage min in frequency}&\texttt{Char.SpectralAxis.\newline Coverage.Bounds\newline Limits.LoLim}&{em.freq;stat.min}&Mhz&radio\cr %\sptablerule