-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathplot_tools.py
140 lines (120 loc) · 4.76 KB
/
plot_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from matplotlib.animation import FuncAnimation
import matplotlib.pyplot as plt
import numpy as np
from autograd import grad
def plot_contourf(cost_f, figsize=[10, 10], _show=True):
fig = plt.figure(figsize=figsize)
ax=fig.gca()
x = np.arange(cost_f.xmin, cost_f.xmax, 0.1)
y = np.arange(cost_f.ymin, cost_f.ymax, 0.1)
X, Y = np.meshgrid(x, y)
zs = np.array([cost_f.eval(x,y) for x,y in zip(np.ravel(X), np.ravel(Y))])
Z = zs.reshape(X.shape)
Gx, Gy = np.gradient(Z) # gradients with respect to x and y
G = (Gx**2.0+Gy**2.0)**.5 # gradient magnitude
N = G/G.max() # normalize 0..1
ax.contourf(X, Y, Z, cmap=plt.cm.get_cmap(plt.cm.afmhot), levels=np.linspace(zs.min(), zs.max(), 1000))
plt.text(cost_f.x_optimum, cost_f.y_optimum,"x", color="b", size=20)
if _show:
plt.show()
return fig, ax
def plot_trajectories(trajectories_dict, cost_f, figsize=[10,10],
filepath="test.gif", frames=10):
fig, ax = plot_contourf(cost_f=cost_f, figsize=[10, 10], _show=False)
global dots; dots=[]
def update(frame_number):
global dots
ax=fig.gca()
for sc in dots: sc.remove()
dots=[]
for name, (x, y, c) in trajectories_dict.items():
ax.plot(x[:frame_number], y[:frame_number], color=c, zorder=1, linewidth=2)
k=ax.scatter(x[frame_number], y[frame_number], color=c, zorder=1, s=50)
dots.append(k)
plt.legend(trajectories_dict.keys())
animation = FuncAnimation(fig, update, interval=1, frames=frames);
animation.save(filepath, dpi=80, writer = "imagemagick");
def plot_cost_function_3d(cost_f, grain=0.01, figsize=[10,6]):
x_grid = np.arange(cost_f.xmin, cost_f.xmax, grain) # Controls the X region covered by the mesh grid
y_grid = np.arange(cost_f.ymin, cost_f.ymax, grain) # Controls the Y region covered by the mesh grid
X, Y = np.meshgrid(x_grid, y_grid)
Z = np.array([cost_f.eval(x_grid,y_grid) for x_grid,y_grid in zip(np.ravel(X), np.ravel(Y))]).reshape(X.shape)
Gx, Gy = np.gradient(Z) # gradients with respect to x and y
fig = plt.figure(figsize=figsize)
ax = fig.gca(projection='3d')
ax.plot_surface(X, Y, Z, cmap=plt.cm.coolwarm, antialiased=False, shade=False,
rstride=5, cstride=1, linewidth=0, alpha = 1)
ax.patch.set_facecolor('white')
ax.view_init(elev=30., azim=70)
ax.set_xlabel("X"); ax.set_ylabel("Y"); ax.set_zlabel("Z")
ax.xaxis.labelpad = ax.yaxis.labelpad = ax.zaxis.labelpad = 15
plt.show()
def plot_evolution_charts(cost_f, errors, distance, xs, ys):
plt.figure(figsize=[18,6])
plt.plot(errors)
plt.title("Error (Z axis) evolution over time. Minimum error obtained in {0} iterations: {1}".format(len(errors), min(errors)))
plt.xlabel("time (iterations)")
plt.ylabel("error")
plt.grid()
plt.show()
plt.figure(figsize=[18,6])
plt.semilogy(np.abs(np.array(errors) - cost_f.z_optimum))
plt.title("Log-error (Z axis) evolution over time. Minimum error obtained in {0} iterations: {1}".format(len(errors), min(errors)))
plt.xlabel("time (iterations)")
plt.ylabel("log(error)")
plt.grid()
plt.show()
plt.figure(figsize=[18,6])
plt.plot(distance)
plt.ylim([0, max(distance)])
plt.title("Distance to minimum evolution over time. Minimum distance obtained in {0} iterations: {1}".format(len(errors), min(errors)))
plt.xlabel("time (iterations)")
plt.ylabel("distance")
plt.grid()
plt.show()
def plot_cinematics_charts(xs, ys):
plt.figure(figsize=[18,6])
plt.subplot(131)
plt.plot(xs)
plt.title("X parameter evolution")
plt.xlabel("iterations")
plt.ylabel("x")
plt.grid()
plt.subplot(132)
plt.plot(ys)
plt.title("Y parameter evolution")
plt.xlabel("iterations")
plt.ylabel("y")
plt.grid()
plt.subplot(133)
plt.plot(xs, ys)
plt.title("x/y evolution")
plt.xlabel("x")
plt.ylabel("y")
plt.grid()
plt.show()
vel_xs=np.diff(xs)
vel_ys=np.diff(ys)
plt.figure(figsize=[18,6])
plt.subplot(131)
plt.plot(np.abs(vel_xs))
plt.title("X parameter velocity (momentum; $v_x$)")
plt.xlabel("iterations")
plt.ylabel("vx")
plt.ylim(0,1.05*max(vel_xs))
plt.grid()
plt.subplot(132)
plt.plot(np.abs(vel_ys))
plt.title("Y parameter velocity (momentum; $v_y$)")
plt.xlabel("iterations")
plt.ylabel("vy")
plt.ylim(0,1.05*max(vel_ys))
plt.grid()
plt.subplot(133)
plt.plot(np.sqrt(np.array(vel_xs)**2 + np.array(vel_ys)**2))
plt.title("Absolute velocity ($\sqrt{v_x^2 + v_y^2}$)")
plt.xlabel("iterations")
plt.ylabel("v")
plt.ylim(0,1.05*max(np.sqrt(np.array(vel_xs)**2 + np.array(vel_ys)**2)))
plt.grid()
plt.show()