forked from kenshohara/3D-ResNets-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvalidation.py
87 lines (69 loc) · 2.84 KB
/
validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import time
import sys
import torch
import torch.distributed as dist
from utils import AverageMeter, calculate_accuracy
def val_epoch(epoch,
data_loader,
model,
criterion,
device,
logger,
tb_writer=None,
distributed=False):
print('validation at epoch {}'.format(epoch))
model.eval()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
accuracies = AverageMeter()
end_time = time.time()
with torch.no_grad():
for i, (inputs, targets) in enumerate(data_loader):
data_time.update(time.time() - end_time)
targets = targets.to(device, non_blocking=True)
outputs = model(inputs)
loss = criterion(outputs, targets)
acc = calculate_accuracy(outputs, targets)
losses.update(loss.item(), inputs.size(0))
accuracies.update(acc, inputs.size(0))
batch_time.update(time.time() - end_time)
end_time = time.time()
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc {acc.val:.3f} ({acc.avg:.3f})'.format(
epoch,
i + 1,
len(data_loader),
batch_time=batch_time,
data_time=data_time,
loss=losses,
acc=accuracies))
if distributed:
loss_sum = torch.tensor([losses.sum],
dtype=torch.float32,
device=device)
loss_count = torch.tensor([losses.count],
dtype=torch.float32,
device=device)
acc_sum = torch.tensor([accuracies.sum],
dtype=torch.float32,
device=device)
acc_count = torch.tensor([accuracies.count],
dtype=torch.float32,
device=device)
dist.all_reduce(loss_sum, op=dist.ReduceOp.SUM)
dist.all_reduce(loss_count, op=dist.ReduceOp.SUM)
dist.all_reduce(acc_sum, op=dist.ReduceOp.SUM)
dist.all_reduce(acc_count, op=dist.ReduceOp.SUM)
losses.avg = loss_sum.item() / loss_count.item()
accuracies.avg = acc_sum.item() / acc_count.item()
if logger is not None:
logger.log({'epoch': epoch, 'loss': losses.avg, 'acc': accuracies.avg})
if tb_writer is not None:
tb_writer.add_scalar('val/loss', losses.avg, epoch)
tb_writer.add_scalar('val/acc', accuracies.avg, epoch)
return losses.avg