forked from ROCm/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUnique.cpp
144 lines (123 loc) · 4.5 KB
/
Unique.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
// Returns unique elements of input tensor.
#include "ATen/ATen.h"
#include "ATen/Dispatch.h"
#include <set>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
namespace at {
namespace native{
namespace {
template <typename scalar_t>
std::tuple<Tensor, Tensor> _unique_cpu_template(
const Tensor& self,
const bool sorted,
const bool return_inverse) {
const Tensor& input = self.contiguous();
const scalar_t* input_data = input.data<scalar_t>();
std::unordered_set<scalar_t> set(input_data, input_data + input.numel());
Tensor output = at::empty({static_cast<int64_t>(set.size())}, input.options());
scalar_t* output_data = output.data<scalar_t>();
if (sorted) {
std::vector<scalar_t> vec(set.begin(), set.end());
std::sort(vec.begin(), vec.end());
std::copy(vec.begin(), vec.end(), output_data);
} else {
std::copy(set.begin(), set.end(), output_data);
}
Tensor inverse_indices = at::empty({0}, self.options().dtype(kLong));
if (return_inverse) {
inverse_indices.resize_(input.sizes());
int64_t* inverse_indices_data = inverse_indices.data<int64_t>();
std::unordered_map<scalar_t, int64_t> inverse_map;
inverse_map.reserve(output.numel());
for (int i = 0; i < output.numel(); ++i) {
inverse_map[output_data[i]] = i;
}
for (int i = 0; i < input.numel(); ++i) {
inverse_indices_data[i] = inverse_map[input_data[i]];
}
}
return std::make_tuple(output, inverse_indices);
}
template<class ForwardIt>
ForwardIt _unique_dim_cpu_impl(ForwardIt first, ForwardIt last,
std::vector<int64_t>& indices, Tensor inverse_indices_vec) {
if (first == last) {
return last;
}
// save to calculate distance to iterators
ForwardIt begin = first;
// set first inverse index
inverse_indices_vec[indices[0]] = 0;
ForwardIt result = first;
while (++first != last) {
if (!at::equal(*result, *first) && ++result != first) {
*result = std::move(*first);
}
int64_t idx_result = std::distance(begin, result);
int64_t idx_first = std::distance(begin, first);
inverse_indices_vec[indices[idx_first]] = idx_result;
}
return ++result;
}
template <typename scalar_t>
std::tuple<Tensor, Tensor> _unique_dim_cpu_template(
const Tensor& self,
const int64_t dim,
const bool return_inverse) {
// reshape tensor as [dim, -1]
Tensor input_flat = self.transpose(dim, 0);
auto orig_sizes = input_flat.sizes().vec();
input_flat = input_flat.contiguous().view({input_flat.size(0), -1});
std::vector<int64_t> indices(input_flat.size(0));
std::iota(indices.begin(), indices.end(), 0);
int64_t numel = input_flat.size(1);
scalar_t* input_flat_ptr = ((scalar_t*)input_flat.data_ptr());
// sort indices using data
std::sort(indices.begin(), indices.end(),
[&](int64_t a, int64_t b) -> bool {
for (int64_t i = 0; i < numel; ++i) {
scalar_t lhs = input_flat_ptr[i + a * numel];
scalar_t rhs = input_flat_ptr[i + b * numel];
if (lhs < rhs) {
return true;
} else if (lhs > rhs) {
return false;
}
}
return false;
});
Tensor input_sorted = at::empty(input_flat.sizes(), input_flat.options());
for (int i = 0; i < indices.size(); ++i) {
input_sorted[i] = input_flat[indices[i]];
}
Tensor inverse_indices = at::empty(indices.size(), self.options().dtype(kLong));
std::vector<Tensor> input_unbind = at::unbind(input_sorted, 0);
auto last = _unique_dim_cpu_impl(
input_unbind.begin(), input_unbind.end(), indices, inverse_indices);
input_unbind.erase(last, input_unbind.end());
// reshape back
auto output = at::stack(input_unbind, 0);
auto new_sizes = std::vector<int64_t>(orig_sizes);
new_sizes[0] = -1;
output = output.view(new_sizes);
output = output.transpose(0, dim);
return std::make_tuple(output, inverse_indices);
}
} // namespace
std::tuple<Tensor, Tensor>
_unique_cpu(const Tensor& self, const bool sorted, const bool return_inverse) {
return AT_DISPATCH_ALL_TYPES(self.type(), "unique", [&] {
return _unique_cpu_template<scalar_t>(self, sorted, return_inverse);
});
}
std::tuple<Tensor, Tensor>
_unique_dim_cpu(const Tensor& self, const int64_t dim, const bool sorted, const bool return_inverse) {
return AT_DISPATCH_ALL_TYPES(self.type(), "unique_dim", [&] {
// The current implementation using `dim` always sorts due to unhashable tensors
return _unique_dim_cpu_template<scalar_t>(self, dim, return_inverse);
});
}
} // namespace native
} // namespace at