From 30ad77a18a9821bf75df2a1367b87db4778bb380 Mon Sep 17 00:00:00 2001 From: "devin-ai-integration[bot]" <158243242+devin-ai-integration[bot]@users.noreply.github.com> Date: Tue, 3 Dec 2024 13:58:19 +0000 Subject: [PATCH] revert: Remove changes to bulk_classification.md as requested --- docs/examples/bulk_classification.md | 16 ---------------- 1 file changed, 16 deletions(-) diff --git a/docs/examples/bulk_classification.md b/docs/examples/bulk_classification.md index 6249c2479..63d0e147b 100644 --- a/docs/examples/bulk_classification.md +++ b/docs/examples/bulk_classification.md @@ -414,22 +414,8 @@ Since everything is already annotated with Pydantic, this code is very simple to ## Improving the Model -### Single-Label Classification - There's a couple things we could do to make this system a little bit more robust. -### Multi-Label Classification - -Notice in the example we use Iterable[Tag] vs Tag. This is because we might want to use a multiclass classification model that returns multiple tag! - -### Working with DataFrames - -When working with large datasets, you might want to use pandas DataFrames for efficient processing. See our [DataFrame Integration Guide](pandas_df.md) for details. - -### Streaming Responses - -For real-time processing needs, you can utilize streaming responses. Check out our [Partial Streaming Guide](partial_streaming.md) for implementation details. - 1. Use confidence score: ```python @@ -542,6 +528,4 @@ async def get_tags(text: List[str], tags: List[Tag]) -> List[Tag]: tag_results = asyncio.run(get_tags(text, tags)) for tag in tag_results: print(tag) - #> id=0 name='personal' #> id=1 name='phone' -```