-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
220 lines (192 loc) · 10.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import copy
import arguments as args
from agents import DQN_Agent
import pandas as pd
import torch
import random
import itertools
import time
import numpy as np
import utils
import sys
import os
import hashlib
import pickle
import multiprocessing
from multiprocessing import Pool
import optimal_lr
from networks import QNetwork as cnn
def run_atari(a_n, net_type, sd, exp_final_eps, b_size, b_num, ddqn, up_time,method, method_para, p_loss, p_loss_para,
tau, train = True):
args_dict = {'CUDA_VISIBLE_DEVICES': args.CUDA_VISIBLE_DEVICES,
'number_env': args.number_env, 'learning_rate': args.learning_rate, 'final_step': args.final_step,
'buffer_size': args.buffer_size, 'learning_starts': args.learning_starts, 'gamma': args.gamma,
'target_update_interval': args.target_update_interval, 'decay_step': args.decay_step,
'exploration_initial_eps': args.exploration_initial_eps, 'max_grad_norm': args.max_grad_norm,
'test_num': args.test_num, 'FullyObs_minigrid': args.FullyObs_minigrid,
'deterministic': args.deterministic,
'fix_difficulty': args.fix_difficulty,
'atari_name': a_n, 'network_type': net_type, 'seed': sd,
'exploration_final_eps': exp_final_eps, 'batch_size': b_size,
'batch_num': b_num, 'double_dqn': ddqn, 'update_time': up_time,
'sample_method': method,
'sample_method_para': method_para, 'policy_loss': p_loss,
'policy_loss_para': p_loss_para, 'tau':tau}
args_dict = utils.dict_to_object(args_dict)
args_dict.path = str(args_dict.double_dqn) + '_' + str(args_dict.FullyObs_minigrid) + '/' + args_dict.atari_name + '/' + args_dict.network_type + '_' + str(args_dict.seed) + '_' + str(args_dict.learning_rate)
if args_dict.sample_method == 'kl':
args_dict.sample_method_para = optimal_lr.optimal_para_kl_dict[args_dict.atari_name][0]
args_dict.policy_loss_para = optimal_lr.optimal_para_kl_dict[args_dict.atari_name][1]
args_dict.tau = optimal_lr.optimal_para_kl_dict[args_dict.atari_name][2]
elif args_dict.sample_method == 'uniform':
args_dict.learning_rate = optimal_lr.optimal_lr_dict['dqn'][args_dict.atari_name]
args_dict.path = str(args_dict.double_dqn) + '_' + str(args_dict.FullyObs_minigrid) + '/' + args_dict.atari_name + '/' + args_dict.network_type + '_' + str(args_dict.seed) + '_' + str(args_dict.learning_rate)
# print('learning_rate:',args_dict.learning_rate)
print('Training ...')
setup_seed(args_dict.seed)
if args_dict.sample_method != 'uniform':
args_dict.name_form = str(args_dict.batch_size) + '_' + str(args_dict.batch_num) + '_' + str(args_dict.update_time) + '_' + str(args_dict.exploration_final_eps).split('.')[-1] + '_' + args_dict.sample_method + '_' + str(args_dict.sample_method_para) + '_' + str(args_dict.policy_loss) + '_' + str(args_dict.policy_loss_para) + '_' + str(args_dict.tau)
else:
args_dict.name_form = str(args_dict['batch_size']) + '_' + str(args_dict['batch_num']) +'_' + str(args_dict['update_time']) + '_' + str(args_dict['exploration_final_eps']).split('.')[-1] + '_' + args_dict['sample_method']
print('log path:',args_dict.path)
print('file name:',args_dict.name_form)
if 'MinAtar' in args_dict['atari_name']:
from env_wrappers.minatar_wrappers import Baselines_DummyVecEnv
elif 'Sokoban' in args_dict['atari_name']:
from env_wrappers.sokoban_wrappers import Baselines_DummyVecEnv
elif 'MiniGrid' in args_dict['atari_name']:
from env_wrappers.minigrid_wrappers import Baselines_DummyVecEnv
os.environ["CUDA_VISIBLE_DEVICES"] = str(args_dict['CUDA_VISIBLE_DEVICES'])
# print('CUDA_VISIBLE_DEVICES:',args_dict['CUDA_VISIBLE_DEVICES'])
batch_env = Baselines_DummyVecEnv(env_id=args_dict['atari_name'], num_env=args_dict['number_env'], array_obs=(args_dict['network_type'] != 'mlp'))
agent = DQN_Agent(batch_env,cnn,args_dict)
# print('agent initialized!')
states = batch_env.reset()
max_q_mean_list = []
all_q_mean_list = []
density_list = []
time_use_list = []
print('game:',args_dict['atari_name'],'| action space:',batch_env.action_space,
'|obs space:',batch_env.observation_space,'|method:',args_dict['sample_method'])
print('---')
rewards, dones, info = None,None,None
current_step = 0
tstart = time.time()
net_time = 0
while current_step <= args_dict.final_step:
net_tstart = time.time()
# print(states)
actions = agent.act(states,rewards, dones, info, train,current_step)
# print(actions)
net_time += time.time() - net_tstart
next_states, rewards, dones, info = batch_env.step(actions)
# print(rewards)
states = next_states
# print('states :', states[0].dtype)
if current_step % int(args_dict['final_step']/20/2) == 0: # 200000 10000 50000
tnow = time.time() + 0.001
time_use_list.append(tnow - tstart)
print('{}, seed: {}, sample_method_para: {}, policy_loss_para: {}, tau: {}, step: {:.2e}, reward (mean,max): {}, length: {}'.format(
args_dict.atari_name, args_dict.seed, args_dict.sample_method_para, args_dict.policy_loss_para, args_dict.tau, current_step,[batch_env.get_episode_rewmean(),batch_env.get_episode_rewmax()],
batch_env.get_episode_lenmean()))
if current_step % int(args_dict['final_step']/20) == 0: # 1000000 100000
model_path = 'model/' + args_dict['path']
try:
if not os.path.exists(model_path):
os.makedirs(model_path)
except:
pass
model_name = '/' + str(current_step) + '_' + args_dict['name_form'] + ".pth"
agent.save_model(model_path + model_name)
max_q_mean_list.append(agent.max_q_mean)
all_q_mean_list.append(agent.all_q_mean)
density_list.append(agent.density)
current_step += batch_env.get_num_of_envs()
# print('current_step :',current_step,actions,dones,agent.terminal_list,agent.action_list)
log_path = 'log/' + args_dict['path']
try:
if not os.path.exists(log_path):
os.makedirs(log_path)
except:
pass
np.savez_compressed(log_path + '/statistics_' + args_dict['name_form'],
max_q_mean = max_q_mean_list,
all_q_mean = all_q_mean_list,
density = density_list,
action_space = [batch_env.action_space]*21,
time_use = time_use_list)
# this file is much smaller than np.save, f.write, pickle.dump
print('Testing ... ')
test_atari(args_dict)
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def test_atari(args_dict):
tempM = [] # temp. mean score
# mean_score = []
setup_seed(args_dict.seed*1000) # test using different seed
tstart = time.time()
path = args_dict.path
name_form = args_dict.name_form
if 'MinAtar' in args_dict.atari_name:
from env_wrappers.minatar_wrappers import Baselines_DummyVecEnv
elif 'Sokoban' in args_dict.atari_name:
from env_wrappers.sokoban_wrappers import Baselines_DummyVecEnv
elif 'MiniGrid' in args_dict.atari_name:
from env_wrappers.minigrid_wrappers import Baselines_DummyVecEnv
for index in range(0, int(args_dict.final_step) + 1, int(args_dict.final_step/20)):
os.environ["CUDA_VISIBLE_DEVICES"] = str(args_dict.CUDA_VISIBLE_DEVICES)
test_env = Baselines_DummyVecEnv(env_id=args_dict.atari_name, num_env=args_dict.number_env, array_obs=(args_dict.network_type != 'mlp'))
test_states = test_env.reset()
test_rewards, test_dones, test_info = None, None, None
agent = DQN_Agent(test_env, cnn, args_dict)
model_path = 'model/' + path
model_name = '/' + str(index) + '_' + name_form + ".pth"
agent.load_model(model_path + model_name)
# print(model_path+model_name,'loaded!')
while len(test_env.epinfobuf) < args_dict.test_num:
actions = agent.act(test_states, test_rewards, test_dones, test_info, False,0)
test_next_states, test_rewards, test_dones, test_info = test_env.step(actions)
test_states = test_next_states
# input("next action:")
tempM.append(test_env.get_episode_rewmean())
print(tempM,test_env.get_episode_lenmean())
# mean_score.append(tempM)
mean_score = {'steps':range(0, int(args_dict.final_step) + 1, int(args_dict.final_step / 20)),'mean_score':tempM}
mean_score = pd.DataFrame(mean_score)
# mean_score = pd.DataFrame(mean_score).melt(var_name='iteration', value_name='mean_score')
log_path = 'log/' + path
try:
if not os.path.exists(log_path):
os.makedirs(log_path)
except:
pass
mean_score.to_csv(log_path + "/mean_score_" + name_form + ".csv", index=False)
print("Save mean_score successfully. Time: {:.2f}".format((time.time()-tstart)/60))
print(log_path + "/mean_score_" + name_form + ".csv")
if __name__ == '__main__':
total_start_time = time.time()
# print(os.getcwd())
import argparse
parser = argparse.ArgumentParser()
# parser.add_argument("--lr", type=float, default=1e-4)
para = parser.parse_args()
experiments = list(itertools.product(*args.para_list_dict.values()))
# print(len(experiments))
# for single process
for a_n, net_type, sd, exp_final_eps, b_size, b_num, ddqn, up_time, \
method, method_para, p_loss, p_loss_para, tau in experiments:
run_atari(a_n, net_type, sd, exp_final_eps, b_size, b_num, ddqn, up_time,method, method_para, p_loss, p_loss_para, tau)
# ctx = multiprocessing.get_context('spawn')
# p = ctx.Pool(4)
# for atari_name, network_type, seed, exploration_final_eps, batch_size, batch_num, double_dqn, update_time, \
# sample_method, sample_method_para, policy_loss, policy_loss_para,tau in experiments:
# p.apply_async(run_atari, args=(atari_name, network_type, seed, exploration_final_eps, batch_size, batch_num, double_dqn, update_time,
# sample_method, sample_method_para, policy_loss, policy_loss_para,tau,),error_callback=print_error)
# p.close()
# p.join()
print('total time used: {:.2f}'.format((time.time()-total_start_time)/3600))