-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuffers.py
418 lines (379 loc) · 20.2 KB
/
buffers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import numpy as np
from collections import deque,OrderedDict,defaultdict
import copy
import sys
import utils
import random
class TreeNode(object):
def __init__(self, parent,state,state_key):
self.parent = parent # {}
self.state = state # array or feature vector
self.s_key = state_key # s_key is combination of state and terminal, str(state)+str(terminal)
self.node_visited_time = 0
self.edges = {} # a map from action to TreeNode, key:edge, value: node
self.edges_info = {} # key: edge, value: [a,r,t,visited_time]
self.q = defaultdict(float) # key: a, value: q value
self.a_visited_time = defaultdict(int) # key:a, value: visited time
self.value = 0 # state value, is also q value for q learning
self.value_updated_time = 0
def expand(self,edge,node,a,r,t):
# edge is combination of action, reward and terminal, str(action)+str(reward)+str(terminal)
self.edges[edge] = node
self.edges_info[edge] = [a,r,t,1]
def print_info(self):
print('edges:',self.node_visited_time,self.edges.keys())
print('edges_info:',self.edges_info)
print('q:',self.q,self.a_visited_time,self.value,self.value_updated_time)
class Graph_buffer():
# for CEER
def __init__(self,args_dict, action_space):
self.buffer_size = args_dict.buffer_size
self.current_buffer_length = 0
self.gamma = args_dict.gamma
self.tau = args_dict.tau
self.action_space = action_space
self.s_key = OrderedDict() # state key, save s_key as set, search complexity is O(1)
self.s_key_without_terminal_s_list = [] # state key
self.terminal_s_key = set()
self.node_dict = {}
self.s_key_list_for_uniform_sample = deque(maxlen=self.buffer_size) # for uniform sample
self.total_value_updated_time = 0 # should initialized as 0, but as 1 in case zero division error
self.total_edges = 0
def add_data(self,s_t,a_t,r_t,t_t,s_t_1,s_t_key,s_t_1_key): # todo: multiple children
edge = s_t_key + '_' + str(a_t) + '_' + str(r_t) + '_' + str(t_t) + '_' + s_t_1_key
# todo: what if s_t == s_t_1?
if s_t_key not in self.s_key and s_t_1_key not in self.s_key:
# print('none!')
# node
self.node_dict[s_t_key] = TreeNode(parent={},state=s_t,state_key=s_t_key)
self.node_dict[s_t_1_key] = TreeNode(parent={}, state=s_t_1,state_key=s_t_1_key)
# edge
self.node_dict[s_t_key].expand(edge,self.node_dict[s_t_1_key],a_t,r_t,t_t)
self.node_dict[s_t_1_key].parent[edge] = self.node_dict[s_t_key]
# record s key
self.s_key_without_terminal_s_list.append(s_t_key) # s_t_key must not be terminal state
if s_t_key == s_t_1_key:
assert self.node_dict[s_t_key] is self.node_dict[s_t_1_key]
if self.current_buffer_length < self.buffer_size:
tree_idx_s_t = self.current_buffer_length + self.buffer_size - 1
self.s_key[s_t_key] = tree_idx_s_t
self.current_buffer_length += 1
else:
del_k, del_v = self.s_key.popitem(last=False) # k:s_key, v: tree index
self.del_node(del_k)
self.s_key[s_t_key] = del_v
else:
if self.current_buffer_length < self.buffer_size:
# add s_t
tree_idx_s_t = self.current_buffer_length + self.buffer_size - 1
self.s_key[s_t_key] = tree_idx_s_t
self.current_buffer_length += 1
# add s_t_1
if self.current_buffer_length < self.buffer_size:
tree_idx_s_t_1 = self.current_buffer_length + self.buffer_size - 1
self.s_key[s_t_1_key] = tree_idx_s_t_1
self.current_buffer_length += 1
else:
del_k, del_v = self.s_key.popitem(last=False) # k:s_key, v: tree index
self.del_node(del_k)
# print('+++', del_k, del_v)
self.s_key[s_t_1_key] = del_v
else:
# add s_t
del_k, del_v = self.s_key.popitem(last=False) # k:s_key, v: tree index
self.del_node(del_k)
# print('xxx', del_k, del_v)
self.s_key[s_t_key] = del_v
# add s_t_1
del_k, del_v = self.s_key.popitem(last=False) # k:s_key, v: tree index
self.del_node(del_k)
# print('---', del_k, del_v)
self.s_key[s_t_1_key] = del_v
if not t_t and s_t_1_key != s_t_key:
self.s_key_without_terminal_s_list.append(s_t_1_key)
assert self.node_dict[s_t_key] is self.node_dict[s_t_1_key].parent[edge]
assert self.node_dict[s_t_key].edges[edge] is self.node_dict[s_t_1_key]
elif s_t_key in self.s_key and s_t_1_key not in self.s_key:
# print('s_t in!')
# node
self.node_dict[s_t_1_key] = TreeNode(parent={}, state=s_t_1,state_key=s_t_1_key)
#edge
self.node_dict[s_t_key].expand(edge,self.node_dict[s_t_1_key],a_t,r_t,t_t)
self.node_dict[s_t_1_key].parent[edge] = self.node_dict[s_t_key]
# keep state order
self.s_key.move_to_end(s_t_key)
# add to sum tree
if self.current_buffer_length < self.buffer_size:
tree_idx_s_t_1 = self.current_buffer_length + self.buffer_size - 1
self.s_key[s_t_1_key] = tree_idx_s_t_1
self.current_buffer_length += 1
else:
del_k, del_v = self.s_key.popitem(last=False) # k:s_key, v: tree index
self.del_node(del_k)
# print('***', del_k, del_v)
self.s_key[s_t_1_key] = del_v
# record s key, don't care the order
if not t_t:
self.s_key_without_terminal_s_list.append(s_t_1_key)
assert self.node_dict[s_t_key] is self.node_dict[s_t_1_key].parent[edge]
assert self.node_dict[s_t_key].edges[edge] is self.node_dict[s_t_1_key]
elif s_t_key not in self.s_key and s_t_1_key in self.s_key:
# print('s_t_1 in!')
# node
self.node_dict[s_t_key] = TreeNode({},state=s_t,state_key=s_t_key)
# edge
self.node_dict[s_t_key].expand(edge,self.node_dict[s_t_1_key],a_t,r_t,t_t)
assert edge not in self.node_dict[s_t_1_key].parent
self.node_dict[s_t_1_key].parent[edge] = self.node_dict[s_t_key]
# keep state order
self.s_key.move_to_end(s_t_1_key)
# add to sum tree
if self.current_buffer_length < self.buffer_size:
tree_idx_s_t = self.current_buffer_length + self.buffer_size - 1
self.s_key[s_t_key] = tree_idx_s_t
self.current_buffer_length += 1
else:
del_k, del_v = self.s_key.popitem(last=False) # k:s_key, v: tree index
self.del_node(del_k)
# print('@@@', del_k, del_v)
self.s_key[s_t_key] = del_v
# record s key, don't care the order
self.s_key_without_terminal_s_list.append(s_t_key)
assert self.node_dict[s_t_key] is self.node_dict[s_t_1_key].parent[edge]
assert self.node_dict[s_t_key].edges[edge] is self.node_dict[s_t_1_key]
else:
# print('both in!')
# edge
if edge in self.node_dict[s_t_key].edges:
assert edge in self.node_dict[s_t_1_key].parent
assert self.node_dict[s_t_key] is self.node_dict[s_t_1_key].parent[edge],\
[edge,self.node_dict[s_t_1_key].parent,np.swapaxes(self.node_dict[s_t_key].state,0,2)[0],
np.swapaxes(self.node_dict[s_t_1_key].state, 0, 2)[0],
np.swapaxes(self.node_dict[s_t_1_key].parent[edge].state,0,2)[0]]
assert self.node_dict[s_t_key].edges[edge] is self.node_dict[s_t_1_key]
self.node_dict[s_t_key].edges_info[edge][3] += 1 # update edge visited time
else:
self.node_dict[s_t_key].expand(edge,self.node_dict[s_t_1_key],a_t,r_t,t_t)
self.node_dict[s_t_1_key].parent[edge] =self.node_dict[s_t_key]
if s_t_key == s_t_1_key:
assert self.node_dict[s_t_key] is self.node_dict[s_t_1_key]
assert self.node_dict[s_t_key] is self.node_dict[s_t_1_key].parent[edge]
assert self.node_dict[s_t_key].edges[edge] is self.node_dict[s_t_1_key]
# keep state order
self.s_key.move_to_end(s_t_key)
self.s_key.move_to_end(s_t_1_key)
# update state visited time
self.node_dict[s_t_key].node_visited_time += 1
assert len(self.node_dict) == len(self.s_key)
assert edge in self.node_dict[s_t_1_key].parent and edge in self.node_dict[s_t_1_key].parent[edge].edges, \
[edge, self.node_dict[s_t_key].edges, self.node_dict[s_t_1_key].parent[edge].edges]
if t_t:
self.terminal_s_key.add(s_t_1_key)
assert len(self.terminal_s_key) + len(self.s_key_without_terminal_s_list) == len(self.s_key),[len(self.terminal_s_key),len(self.s_key_without_terminal_s_list),len(self.s_key)]
self.s_key_list_for_uniform_sample.append([s_t_key,edge])
def update_node(self,n,current_s_t_key_list = None): # todo: set a flag to reduce computation, if no value are changed, we don't need to update so frequently
if current_s_t_key_list:
len_current_s_t_key_list = len(current_s_t_key_list)
if n > len_current_s_t_key_list:
index_list = np.random.randint(len(self.s_key_without_terminal_s_list), size=n - len_current_s_t_key_list)
for index in index_list:
assert self.s_key_without_terminal_s_list[index] in self.s_key, index
assert self.s_key_without_terminal_s_list[index] in self.node_dict, index
self.up_node_(self.s_key_without_terminal_s_list[index])
for s_key in current_s_t_key_list:
# assert s_key in self.s_key, s_key
# assert s_key in self.node_dict, s_key
if s_key not in self.node_dict:
continue
self.up_node_(s_key)
else:
index_list = np.random.randint(len(self.s_key_without_terminal_s_list), size=n)
for index in index_list:
assert self.s_key_without_terminal_s_list[index] in self.s_key, index
assert self.s_key_without_terminal_s_list[index] in self.node_dict, index
self.up_node_(self.s_key_without_terminal_s_list[index])
def up_node_(self,s_key):
if self.node_dict[s_key].edges:
# update q
# reset q
old_edges_num = len(self.node_dict[s_key].q)
self.total_edges -= old_edges_num
self.node_dict[s_key].q = defaultdict(float)
self.node_dict[s_key].a_visited_time = defaultdict(int)
for e in self.node_dict[s_key].edges:
# r + (1-t) * gamma * next_q
# edges_info # key: edge, value: [a,r,t,visited_time]
r = self.node_dict[s_key].edges_info[e][1] # r
t = self.node_dict[s_key].edges_info[e][2] # t
next_q = self.node_dict[s_key].edges[e].value # next q value
visited_time = self.node_dict[s_key].edges_info[e][3] # visited time
unnormalized_q = (r + (1-t) * self.gamma * next_q) * visited_time
self.node_dict[s_key].q[self.node_dict[s_key].edges_info[e][0]] += unnormalized_q
self.node_dict[s_key].a_visited_time[self.node_dict[s_key].edges_info[e][0]] += visited_time
for a in self.node_dict[s_key].a_visited_time:
self.node_dict[s_key].q[a] /= self.node_dict[s_key].a_visited_time[a]
# update v
# print(self.node_dict[s_key].q)
q_max = max(self.node_dict[s_key].q.values())
# print(q_max)
if self.node_dict[s_key].value != q_max:
self.node_dict[s_key].value = q_max
self.node_dict[s_key].value_updated_time += 1
self.total_value_updated_time += 1
# self.changed_count += 1
new_edges_num = len(self.node_dict[s_key].q)
self.total_edges += new_edges_num
assert self.total_edges >= 0
# assert new_edges_num >= old_edges_num, [new_edges_num,old_edges_num]
def del_node(self,state_key):
self.total_edges -= len(self.node_dict[state_key].q)
# del pointer from children
for e in list(self.node_dict[state_key].edges.keys()):
# print(self.node_dict[state_key].children[c].parent)
# print('delete children pointer',c,index)
# print('---')
del self.node_dict[state_key].edges[e].parent[e]
# del pointer from parent
for e in list(self.node_dict[state_key].parent.keys()):
# print(self.node_dict[state_key].parent[index].children)
# print('delete parent pointer',index,c)
# print('---')
del self.node_dict[state_key].parent[e].edges[e]
# substrct value updated time
self.total_value_updated_time -= self.node_dict[state_key].value_updated_time
assert self.total_value_updated_time >= 0
# delete node
del self.node_dict[state_key]
if state_key in self.terminal_s_key:
self.terminal_s_key.remove(state_key)
else:
self.s_key_without_terminal_s_list.remove(state_key)
def get_edge(self,edges,len_edges,index):
stat = [[0.]*len_edges for _ in range(6)]
# each row means: 0:edge visited time, 1:a, 2:r, 3:t, 4:true target q, 5:value_updated_time
for i in range(len_edges):
# edges_info key: edge, value: [a,r,t,visited_time]
stat[0][i] = self.node_dict[index].edges_info[edges[i]][3] # to compute edge probs
total_visited_time = sum(stat[0])
if total_visited_time == 0:
return total_visited_time,stat
else:
self.up_node_(index)
for i in range(len_edges):
stat[1][i] = self.node_dict[index].edges_info[edges[i]][0] # a
stat[2][i] = self.node_dict[index].edges_info[edges[i]][1] # r
stat[3][i] = self.node_dict[index].edges_info[edges[i]][2] # t
stat[4][i] = self.node_dict[index].q[self.node_dict[index].edges_info[edges[i]][0]] # true target q
stat[5][i] = self.node_dict[index].value_updated_time # up
return total_visited_time,stat
def sample_batch(self,n):
s_t = []
a_t = []
r_t = []
t_t = []
s_t1 = []
target_q_t = []
updated_t1 = []
all_target_q_t = []
not_exist_action_value = []
# index_list = self.get_s_key(n)
length = len(self.s_key_list_for_uniform_sample) # [s_t_key,edge]
s_key_index_list = np.random.randint(length,size=n)
for i in s_key_index_list:
index = self.s_key_list_for_uniform_sample[i][0] # s_t_key
edges = list(self.node_dict[index].edges.keys())
len_edges = len(edges)
one_hot_index = [0] * self.action_space
if edges:
total_visited_time,stat = self.get_edge(edges,len_edges,index)
e_index = edges.index(self.s_key_list_for_uniform_sample[i][-1])
s_t.append(self.node_dict[index].state)
a_t.append(stat[1][e_index])
r_t.append(stat[2][e_index])
t_t.append(stat[3][e_index])
s_t1.append(self.node_dict[index].edges[edges[e_index]].state)
target_q_t.append(stat[4][e_index])
if stat[5][e_index] > 0:
updated_t1.append(1.)
else:
updated_t1.append(0.)
tmp_q = []
tmp_not_exist_action_value = []
for a in range(self.action_space):
if a in self.node_dict[index].q:
tmp_q.append(self.node_dict[index].q[a])
tmp_not_exist_action_value.append(0.)
else:
tmp_q.append(-np.inf)
tmp_not_exist_action_value.append(-np.inf) # give minimum value for not existing value
all_target_q_t.append(tmp_q)
not_exist_action_value.append(tmp_not_exist_action_value)
all_q = list(self.node_dict[index].q.values()) # all q key: action, value: tabular q value
all_max_q = round(max(all_q),10)
all_q.remove(self.node_dict[index].q[stat[1][e_index]]) # remove current q | s,a,r,s'
all_q.append(-np.inf) # in case only one action in q values
for k in self.node_dict[index].q.keys():
if round(self.node_dict[index].q[k],10) == all_max_q:
one_hot_index[k] = 1.
else:
print('!!!',index)
self.node_dict[index].print_info()
print(self.node_dict[index].parent.keys())
print([self.node_dict[index].parent[k].edges_info[k] for k in self.node_dict[index].parent.keys()])
assert edges, edges
all_target_q_t = np.array(all_target_q_t)
not_exist_action_value = np.array(not_exist_action_value)
assert len(a_t) == n
# change True/False to 1,0 by +0.
return np.array(s_t),np.array(a_t),np.array(r_t),np.array(t_t)+0.,np.array(s_t1),\
np.array(target_q_t),np.array(updated_t1),\
all_target_q_t,not_exist_action_value
class Buffer():
# for DQN
def __init__(self,buffer_size):
self.initialize_buffer(buffer_size)
def initialize_buffer(self,buffer_size):
self.state_list = deque(maxlen=buffer_size+1)
self.action_list = deque(maxlen=buffer_size+1)
self.clone_state_list = deque(maxlen=buffer_size+1)
self.reward_list = deque(maxlen=buffer_size)
self.terminal_list = deque(maxlen=buffer_size)
def add_data(self,state_t=None,action_t=None,reward_t=None,terminal_t=None,clone_state_t=None):
if state_t is not None:
self.state_list.append(state_t)
if action_t is not None:
self.action_list.append(action_t)
if reward_t is not None:
self.reward_list.append(reward_t)
if terminal_t is not None:
self.terminal_list.append(terminal_t)
if clone_state_t is not None:
self.clone_state_list.append(clone_state_t)
class BatchBuffer():
def __init__(self,args_dict):
self.args_dict = args_dict
self.buffer_num = args_dict.number_env
self.buffer_size = int(args_dict['buffer_size'] / args_dict['number_env'])
self.buffer_list = [Buffer(self.buffer_size) for _ in range(self.buffer_num)]
self.model_list = deque(maxlen=self.buffer_size+1)
self.gamma = args_dict.gamma
# print(self.model_list.maxlen,self.buffer_list[0].state_list.maxlen)
def sample_batch(self,current_step,n):
max_index = min(int(self.args_dict.buffer_size/self.args_dict.number_env), int(current_step / self.args_dict.number_env))
index = np.random.randint(max_index,size = n)
s_t = []
a_t = []
r_t = []
t_t = []
s_t1 = []
for buffer in self.buffer_list:
for i in index:
# print('buffer.state_list[i] :',buffer.state_list[i].dtype)
s_t.append(buffer.state_list[i])
a_t.append(buffer.action_list[i])
r_t.append(np.float32(buffer.reward_list[i]))
t_t.append(np.float32(buffer.terminal_list[i]))
s_t1.append(buffer.state_list[i+1])
# print(cs_t[0].shape)
# print(np.array(s_t).shape,np.array(a_t).shape,np.array(r_t).shape,np.array(t_t).shape,np.array(s_t1).shape,np.array(cs_t).shape)
return np.array(s_t),np.array(a_t),np.array(r_t),np.array(t_t),np.array(s_t1)