diff --git a/index.bs b/index.bs index a859f42c..d7d67f6f 100644 --- a/index.bs +++ b/index.bs @@ -2439,8 +2439,8 @@ partial interface MLGraphBuilder { 1. If |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}} is not equal to |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}}, then [=exception/throw=] a "{{DataError}}" {{DOMException}}. 1. Let |descriptor| be a new {{MLOperandDescriptor}}. 1. Set |descriptor|.{{MLOperandDescriptor/dataType}} to |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}}. - 1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of running the [=MLGraphBuilder/broadcast-shapes=] steps given |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}. - 1. If that [=exception/throws=] an error, re-[=exception/throw=] the error. + 1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of [=bidirectionally broadcasting the shapes=] |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}. + 1. If that returns failure, then [=exception/throw=] a "{{DataError}}" {{DOMException}}. 1. If any of the following sub-steps fail, [=exception/throw=] an "{{OperationError}}" {{DOMException}}. 1. Let |output| be the result of [=creating an MLOperand=] given [=this=] and |descriptor|. 1. Make a request to the underlying platform to: @@ -2454,21 +2454,6 @@ partial interface MLGraphBuilder { -
- - To broadcast-shapes given |shape1| and |shape2|, run the following steps: - -
- 1. [=Assert=]: The type of |shape1| and |shape2| is `sequence of unsigned long`. - 1. Let |output| be the result of invoking the [=implementation-defined=] shape broadcast on |shape1| and |shape2|. - 1. If that fails, then [=exception/throw=] a "{{DataError}}" {{DOMException}}. - 1. Return |output|. -
- The most common implementation is that two shapes are compatible, when each of their corresponding dimensions are equal, or one of them is 1. The output shape consists of the maximum of the corresponding dimensions. -
-
-
-
The element-wise binary operation algorithms invoke the [=MLGraphBuilder/element-wise-binary-op | create element-wise binary operation=] steps as follows. @@ -2576,8 +2561,8 @@ Although operations *greaterOrEqual* and *lesserOrEqual* can each be implemented 1. If |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}} is not equal to |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}}, then [=exception/throw=] a "{{DataError}}" {{DOMException}}. 1. Let |descriptor| be a new {{MLOperandDescriptor}}. 1. Set |descriptor|.{{MLOperandDescriptor/dataType}} to {{MLOperandDataType/"uint8"}}. - 1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of running the [=MLGraphBuilder/broadcast-shapes=] steps given |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}. - 1. If that [=exception/throws=] an error, re-[=exception/throw=] the error. + 1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of [=bidirectionally broadcasting the shapes=] |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}. + 1. If that returns failure, then [=exception/throw=] a "{{DataError}}" {{DOMException}}. 1. If any of the following sub-steps fail, [=exception/throw=] an "{{OperationError}}" {{DOMException}}. 1. Let |output| be the result of [=creating an MLOperand=] given [=this=] and |descriptor|. 1. Make a request to the underlying platform to: @@ -3066,7 +3051,7 @@ partial interface MLGraphBuilder { ### gemm ### {#api-mlgraphbuilder-gemm} -Calculate the [general matrix multiplication of the Basic Linear Algebra Subprograms](https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3). The calculation follows the expression `alpha * A * B + beta * C`, where `A` is a 2-D tensor with shape [M, K] or [K, M], `B` is a 2-D tensor with shape [K, N] or [N, K], and `C` is broadcastable to the shape [M, N]. `A` and `B` may optionally be transposed prior to the calculation. +Calculate the [general matrix multiplication of the Basic Linear Algebra Subprograms](https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3). The calculation follows the expression `alpha * A * B + beta * C`, where `A` is a 2-D tensor with shape [M, K] or [K, M], `B` is a 2-D tensor with shape [K, N] or [N, K], and `C` is [=unidirectionally broadcastable=] to the shape [M, N]. `A` and `B` may optionally be transposed prior to the calculation.