forked from xkianteb/dril
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
224 lines (182 loc) · 7.8 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import matplotlib.pyplot as plt
import glob, csv, pdb, numpy, torch, os, argparse
import pandas
import matplotlib.pyplot as plt
import os
import numpy as np
import seaborn as sns
import cycler
import matplotlib
parser = argparse.ArgumentParser()
parser.add_argument('-env', type=str, default='SpaceInvadersNoFrameskip-v4')
parser.add_argument('-n_bc_epochs', type=int, default=1)
parser.add_argument('-shuffle', type=int, default=2)
parser.add_argument('-lr', type=float, default=0.00025)
parser.add_argument('-quantile', type=float, default=0.98)
parser.add_argument('-decay', type=int, default=1)
parser.add_argument('-exp', type=str, default='exp1')
parser.add_argument('-plot_u_reward', type=int, default=0)
args = parser.parse_args()
data_dir = f'{os.getcwd()}/dril/trained_results/'
def get_results(result_files, filter=False):
rewards = []
u_rewards = []
steps = []
test_reward = []
for r in result_files:
try:
data = pandas.read_csv(r)
idx = len(data['test_reward']) - 1
rewards.append(data['test_reward'][idx])
except:
pass
try:
u_rewards.append(data['u_reward'].tolist())
steps.append(data['total_num_steps'].tolist())
test_reward.append(data['test_reward'].tolist())
except:
pass
return (rewards, u_rewards, steps, test_reward)
def load_results(n_demo):
# Expert results -----------------
expert_results = glob.glob(f'{data_dir}/expert/expert_{args.env}_seed=*.perf')
(expert_reward, _, _, _) = get_results(expert_results)
# Behavior Cloing results --------
bc_mse_results = glob.glob(f'{data_dir}/bc/bc_{args.env}_policy_ntrajs={n_demo}_seed=*.perf')
(bc_mse_reward, _, _,_) = get_results(bc_mse_results)
# DRIL results -------------------
exp_name = f'dril_{args.env}_ntraj={n_demo}_ensemble_lr=0.00025_lr=0.00025_bcep=1001_'
exp_name += f'shuffle=sample_w_replace_quantile=0.98_cost_-1_to_1_seed=*.perf'
bc_mse_variance_results = glob.glob(f'{data_dir}/dril/{exp_name}')
(bc_mse_variance_reward, bc_variance_u_reward, bc_variance_steps, bc_mse_variance_reward_curve) = get_results(bc_mse_variance_results, filter=True)
# Random results -----------------
random_reward = []
random_results = glob.glob(f'{data_dir}/random/{args.env}/random*.perf')
for r in random_results:
random_reward.append(pandas.read_csv(r)['test_reward'].max())
# Gail results --------------------
params = [(clipped_loss, zero_expert_reward, use_obs_norm, use_bc, gail_normalized_reward, bc_loss, clamp_gail_action)
for clipped_loss in [True]
for zero_expert_reward in [True, False]
for use_obs_norm in [False]
for use_bc in [True]
for gail_normalized_reward in [True]
for clamp_gail_action in [False]
for bc_loss in ['mse']]
gail = {}
for gail_reward_type in ['unbias', 'favor_zero_reward', 'favor_non_zero_reward']:
gail_results = f'gail_{args.env}_ntraj={n_demo}_'
gail_results += f'gail_lr=0.001_lr=0.00025_bcep=2001_'
gail_results += f'gail_reward_type={gail_reward_type}_seed=*.perf'
results = glob.glob(f'{data_dir}/gail/{gail_results}')
label = f'GAIL {gail_reward_type}'
(results, _, _, _) = get_results(results)
if results:
gail[label] = results
else:
gail[label] = []
return {'expert': numpy.array(expert_reward),
'bc_mse': numpy.array(bc_mse_reward),
'bc_mse_variance': numpy.array(bc_mse_variance_reward),
'bc_variance_u_reward_curve': bc_variance_u_reward,
'bc_mse_variance_reward_curve': bc_mse_variance_reward_curve,
'bc_variance_steps': bc_variance_steps,
'random': numpy.array(random_reward),
**gail}
def add_line_plot(perf_results, color=None, style=None):
width = 3
s = 10
alpha=0.1
mean = [numpy.mean(perf) for perf in perf_results]
for perf in perf_results:
numpy.std(perf)
std = [numpy.std(perf) for perf in perf_results]
plt.plot([1, 3, 5, 10, 15, 20], mean, style, c=color, linewidth=width, markersize=s)
plt.xticks([1, 3, 5, 10, 15, 20])
plt.fill_between([1, 3, 5, 10, 15, 20], numpy.array(mean) - numpy.array(std), numpy.array(mean) + numpy.array(std), color=color, alpha=alpha)
styles = {'expert': '--',
'bc': 'o-',
'dril': '^-',
'gail0': 'v-',
'gail1': 'D-',
'gail2': '<-',
'gail3': '*-',
'random': '.-'}
n = 12
color = numpy.array(sns.color_palette("colorblind", n_colors=n))
matplotlib.rcParams['axes.prop_cycle'] = cycler.cycler('color', color)
c1 = color[7]*0.9
c2 = color[2]
c3 = color[4]
c4 = color[3]
c5 = color[1]
c6 = color[10]
c7 = color[10]
c8 = color[10]
colors = {'expert': c1,
'bc': c2,
'dril': c3,
'gail0': c4,
'gail1': c5,
'gail2': c7,
'gail3': c8,
'random': c6}
def main():
# Expert ---------------
expert = [load_results(n_demo)['expert'] for n_demo in [1, 3, 5, 10, 15, 20]]
add_line_plot(expert, colors['expert'], styles['expert'])
# Behavior Cloning ------
bc_mse = [load_results(n_demo)['bc_mse'] for n_demo in [1, 3, 5, 10, 15, 20]]
add_line_plot(bc_mse, colors['bc'], styles['bc'])
# DRIL ------------------
bc_mse_variance = [load_results(n_demo)['bc_mse_variance'] for n_demo in [1, 3, 5, 10, 15, 20]]
add_line_plot(bc_mse_variance, colors['dril'], styles['dril'])
# Random ------------------
random = [load_results(n_demo)['random'] for n_demo in [1, 3, 5, 10, 15, 20]]
add_line_plot(random, colors['random'], styles['random'])
# GAIL -----------------
keys = []
for n_demo in [1, 3, 5, 10, 15, 20]:
keys += load_results(n_demo).keys()
gail_keys = sorted(list(set([key for key in keys if 'GAIL' in key])))
final_keys = []
for idx, key in enumerate(gail_keys):
gail_results = [load_results(n_demo)[key] for n_demo in [1, 3, 5, 10, 15, 20]]
add_line_plot(gail_results, colors[f'gail{idx}'], styles[f'gail{idx}'])
final_keys.append(key)
plt.legend(['Expert','BC','DRIL', 'RANDOM']+final_keys, fontsize=6, loc='bottom right')
fsize=16
plt.xlabel('Expert Trajectories', fontsize=fsize)
plt.ylabel('Reward', fontsize=fsize)
env = args.env.replace('-v4', '').replace('NoFrameskip', '')
plt.title(env, fontsize=fsize)
plt.savefig(f'{env}.pdf')
plt.clf()
test_rewards = load_results(10)['bc_mse_variance_reward_curve']
num_values = min([len(test_rewards[0]), len(test_rewards[1])])
test_rewards = np.array([x[:num_values] for x in test_rewards])
u_rewards = load_results(10)['bc_variance_u_reward_curve']
u_rewards = np.array([x[:num_values] for x in u_rewards])
steps = np.array(load_results(10)['bc_variance_steps'][0][:num_values])
u_rewards_mean = -numpy.mean(u_rewards, axis=0)
u_rewards_std = numpy.std(u_rewards, axis=0)
test_rewards_mean = numpy.mean(test_rewards, axis=0)
test_rewards_std = numpy.std(test_rewards, axis=0)
fig, axs = plt.subplots(2, 1)
ax1 = axs[0]
ax2 = axs[1]
box = dict(facecolor='yellow', pad=5, alpha=0.2)
c1 = color[7]
c2 = color[10]
ax1.plot(steps, u_rewards_mean, color='black')
ax1.fill_between(steps, u_rewards_mean - u_rewards_std, u_rewards_mean + u_rewards_std, color=c1, alpha=0.3)
ax1.set_xlabel('steps', fontsize=16)
ax1.set_ylabel('Uncertainty Cost', fontsize=12)
ax1.set_title(env, fontsize=16)
ax2.plot(steps, test_rewards_mean, color=c2)
ax2.fill_between(steps, test_rewards_mean - test_rewards_std, test_rewards_mean + test_rewards_std, color=c2, alpha=0.3)
ax2.set_xlabel('steps', fontsize=16)
ax2.set_ylabel('Episode Reward', fontsize=12)
plt.savefig(f'{env}_u_reward.pdf')
if __name__== "__main__":
main()