-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain.py
559 lines (441 loc) · 20.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
# Default imports
import os
import time
import json
import shutil
import argparse
import importlib
import numpy as np
from tqdm import tqdm
from datetime import datetime
from contextlib import contextmanager
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 24})
import warnings
warnings.filterwarnings('ignore')
# Torch
import torch
import torch.distributed as dist
from torch.utils import tensorboard
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
# Distributed + AMP
from apex.parallel import DistributedDataParallel as DDP
from apex import amp
amp.lists.functional_overrides.FP32_FUNCS.remove('softmax')
amp.lists.functional_overrides.FP16_FUNCS.append('softmax')
# Parse args
parser = argparse.ArgumentParser(description='PyTorch Tacotron 2 Training')
parser.add_argument('--exp', type=str, default=None, required=True, help='Name of an experiment for configs setting.')
parser.add_argument('--rank', default=0, type=int, help='Rank of the process, do not set! Done by multiproc module')
parser.add_argument('--world-size', default=1, type=int, help='Number of processes, do not set! Done by multiproc module')
args = parser.parse_args()
# Prepare config
shutil.copyfile(os.path.join('configs', 'experiments', args.exp + '.py'), os.path.join('configs', '__init__.py'))
# Reload Config
configs = importlib.import_module('configs')
configs = importlib.reload(configs)
Config = configs.Config
PConfig = configs.PreprocessingConfig
# Config dependent imports
from tacotron2.text import text_to_sequence
from router import models, loss_functions, data_functions
from common.utils import remove_crackle
def reduce_tensor(tensor, num_gpus):
"""
:param tensor:
:param num_gpus:
:return:
"""
rt = tensor.clone()
dist.all_reduce(rt, op=dist.reduce_op.SUM)
rt = float(rt)/num_gpus
return rt
def init_distributed(world_size, rank):
"""
:param world_size:
:param rank:
:return:
"""
assert torch.cuda.is_available(), 'Distributed mode requires CUDA.'
print('Initializing Distributed')
# Set cuda device so everything is done on the right GPU.
torch.cuda.set_device(rank % torch.cuda.device_count())
# Initialize distributed communication
dist.init_process_group(
backend=Config.dist_backend, init_method=Config.dist_url,
world_size=world_size, rank=rank, group_name=Config.group_name)
print('Done initializing distributed')
def restore_checkpoint(restore_path, model_name):
"""
:param restore_path:
:param model_name:
:return:
"""
checkpoint = torch.load(restore_path, map_location='cpu')
start_epoch = checkpoint['epoch'] + 1
print('Restoring from `{}` checkpoint'.format(restore_path))
model_config = checkpoint['config']
model = models.get_model(model_name, model_config, to_cuda=True)
# Unwrap distributed
model_dict = {}
for key, value in checkpoint['state_dict'].items():
new_key = key.replace('module.1.', '')
new_key = new_key.replace('module.', '')
model_dict[new_key] = value
model.load_state_dict(model_dict)
return model, model_config, checkpoint, start_epoch
def save_checkpoint(model, epoch, config, optimizer, filepath):
"""
:param model:
:param epoch:
:param config:
:param optimizer:
:param filepath:
:return:
"""
print('Saving model and optimizer state at epoch {} to {}'.format(
epoch, filepath))
torch.save({'epoch': epoch,
'config': config,
'state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()}, filepath)
def save_sample(model_name, model_path):
"""
:param model_name:
:param model_path:
:return:
"""
if model_name == 'Tacotron2':
assert Config.waveglow_checkpoint is not None, 'WaveGlow checkpoint path is missing, could not generate sample'
tacotron2_path = model_path
waveglow_path = Config.waveglow_checkpoint
elif model_name == 'WaveGlow':
assert Config.tacotron2_checkpoint is not None, 'Taco2 checkpoint path is missing, could not generate sample'
waveglow_path = model_path
tacotron2_path = Config.tacotron2_checkpoint
else:
raise NotImplementedError('Unknown model requested: {}'.format(model_name))
t2, _, _, _ = restore_checkpoint(tacotron2_path, 'Tacotron2')
wg, _, _, _ = restore_checkpoint(waveglow_path, 'WaveGlow')
with evaluating(t2), evaluating(wg), torch.no_grad():
for speaker_id in Config.phrases['speaker_ids']:
for text in Config.phrases['texts']:
inp = np.array(text_to_sequence(text, ['english_cleaners']))[None, :]
inp = torch.from_numpy(inp).to(device='cuda', dtype=torch.int64)
s_id = torch.IntTensor([speaker_id]).cuda().long()
if Config.use_emotions:
for emotion, emotion_id in PConfig.emo_id_map.items():
e_id = torch.IntTensor([emotion_id]).cuda().long()
_, mel, _, alignments = t2.infer(inp, s_id, e_id)
audio = wg.infer(mel)
audio_numpy = audio[0].data.cpu().numpy()
alignments_numpy = alignments[0].data.cpu().numpy()
yield speaker_id, emotion, audio_numpy, alignments_numpy, mel
else:
_, mel, _, alignments = t2.infer(inp, s_id)
audio = wg.infer(mel)
audio_numpy = audio[0].data.cpu().numpy()
alignments_numpy = alignments[0].data.cpu().numpy()
yield speaker_id, None, audio_numpy, alignments_numpy, mel
# adapted from: https://discuss.pytorch.org/t/opinion-eval-should-be-a-context-manager/18998/3
# Following snippet is licensed under MIT license
@contextmanager
def evaluating(model):
"""
Temporarily switch to evaluation mode.
:param model:
:return:
"""
istrain = model.training
try:
model.eval()
yield model
finally:
if istrain:
model.train()
def validate(model, criterion, valset, batch_size, world_size, collate_fn, distributed_run, batch_to_gpu):
"""
Handles all the validation scoring and printing
:param model:
:param criterion:
:param valset:
:param batch_size:
:param world_size:
:param collate_fn:
:param distributed_run:
:param batch_to_gpu:
:return:
"""
with evaluating(model), torch.no_grad():
val_sampler = DistributedSampler(valset) if distributed_run else None
val_loader = DataLoader(valset, num_workers=1, shuffle=False, sampler=val_sampler,
batch_size=batch_size, pin_memory=False, collate_fn=collate_fn)
val_loss = 0.0
for i, batch in enumerate(val_loader):
x, y, len_x = batch_to_gpu(batch)
y_pred = model(x)
loss = balance_loss(x, y, y_pred, criterion) if Config.use_loss_coefficients else criterion(y_pred, y)
if distributed_run:
reduced_val_loss = reduce_tensor(loss.data, world_size)
else:
reduced_val_loss = loss.item()
val_loss += reduced_val_loss
val_loss = val_loss / (i + 1)
return val_loss
def adjust_learning_rate(epoch, optimizer, learning_rate, anneal_steps, anneal_factor):
"""
:param epoch:
:param optimizer:
:param learning_rate:
:param anneal_steps:
:param anneal_factor:
:return:
"""
p = 0
if anneal_steps is not None:
for i, a_step in enumerate(anneal_steps):
if epoch >= int(a_step):
p = p+1
if anneal_factor == 0.3:
lr = learning_rate*((0.1 ** (p//2))*(1.0 if p % 2 == 0 else 0.3))
else:
lr = learning_rate*(anneal_factor ** p)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def balance_loss(x, y, y_pred, criterion):
"""
Args:
x: model input
y: labels
y_pred: predictions
criterion: loss function
Returns: balanced loss, torch.tensor
"""
_, _, _, _, _, speaker_ids, emotion_ids = x
batch_size = speaker_ids.shape[0]
loss_balanced = 0
for i in range(batch_size):
yi = [el[i] for el in y]
yi_p = [el[i] for el in y_pred]
s_c = Config.speaker_coefficients[str(speaker_ids[i].item())]
single_loss = s_c * criterion(yi_p, yi)
if Config.use_emotions:
e_c = Config.emotion_coefficients[str(emotion_ids[i].item())]
single_loss *= e_c
loss_balanced += single_loss
loss = loss_balanced / batch_size
return Config.loss_scale * loss
def main():
# Experiment dates
str_date, str_time = datetime.now().strftime("%d-%m-%yT%H-%M-%S").split('T')
# Directories paths
main_directory = os.path.join(Config.output_directory, args.exp, str_date, str_time)
tf_directory = os.path.join(main_directory, 'tb_events')
checkpoint_directory = os.path.join(main_directory, 'checkpoints')
print('Experiment path: `{}`'.format(main_directory))
# Directories check
if args.rank == 0:
if not os.path.exists(main_directory):
os.makedirs(main_directory)
if args.rank == 0:
if not os.path.exists(checkpoint_directory):
os.makedirs(checkpoint_directory)
if args.rank == 0:
if not os.path.exists(tf_directory):
os.makedirs(tf_directory)
# Experiment files set up
if args.rank == 0:
tensorboard_writer = tensorboard.SummaryWriter(log_dir=tf_directory)
shutil.copy2('configs/__init__.py', os.path.join(main_directory, 'config.py'))
with open(os.path.join(main_directory, 'args.json'), 'w') as fl:
json.dump(vars(args), fl, indent=4)
# Enable cuda
torch.backends.cudnn.enabled = Config.cudnn_enabled
torch.backends.cudnn.benchmark = Config.cudnn_benchmark
# Set model name & Init distributed
model_name = Config.model_name
distributed_run = args.world_size > 1
if distributed_run:
init_distributed(args.world_size, args.rank)
# Restore training from checkpoint
if Config.restore_from:
model, model_config, checkpoint, start_epoch = restore_checkpoint(Config.restore_from, model_name)
else:
checkpoint, start_epoch = None, 0
model_config = models.get_model_config(model_name)
model = models.get_model(model_name, model_config, to_cuda=True)
# Distributed run
if not Config.amp_run and distributed_run:
model = DDP(model)
# Define Optimizer
optimizer = torch.optim.Adam(model.parameters(),
lr=Config.learning_rate,
weight_decay=Config.weight_decay)
# Restore optimizer state
if checkpoint and 'optimizer_state_dict' in checkpoint:
print('Restoring optimizer state')
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# FP16 option
if Config.amp_run: # TODO: test if FP16 actually works
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
if distributed_run:
model = DDP(model)
# Set sigma for WaveGlow loss
try:
sigma = model_config['sigma']
except KeyError:
sigma = None
if model_name == 'WaveGlow':
model_config['sigma'] = Config.wg_sigma
sigma = model_config['sigma']
# Set criterion
criterion = loss_functions.get_loss_function(model_name, sigma)
# Set amount of frames per decoder step
try: # TODO: make it working with n > 1
n_frames_per_step = model_config['n_frames_per_step']
except KeyError:
n_frames_per_step = None
# Set dataloaders
collate_fn = data_functions.get_collate_function(model_name, n_frames_per_step)
trainset = data_functions.get_data_loader(model_name=model_name, audiopaths_and_text=Config.training_files)
train_sampler = DistributedSampler(trainset) if distributed_run else None
train_loader = DataLoader(trainset,
num_workers=1,
shuffle=False,
sampler=train_sampler,
batch_size=Config.batch_size,
pin_memory=False,
drop_last=True,
collate_fn=collate_fn)
valset = data_functions.get_data_loader(model_name=model_name, audiopaths_and_text=Config.validation_files)
batch_to_gpu = data_functions.get_batch_to_gpu(model_name)
# Iteration inside of the epoch
iteration = 0
# Set model into training mode
model.train()
# Training loop
if start_epoch >= Config.epochs:
print('Checkpoint epoch {} >= total epochs {}'.format(start_epoch, Config.epochs))
else:
for epoch in range(start_epoch, Config.epochs):
epoch_start_time = time.time()
# Used to calculate avg items/sec over epoch
reduced_num_items_epoch = 0
# Used to calculate avg loss over epoch
train_epoch_avg_loss = 0.0
train_epoch_avg_items_per_sec = 0.0
num_iters = 0
if args.rank == 0:
pb = tqdm(enumerate(train_loader), total=len(train_loader), desc=f'Epoch: {epoch}/{Config.epochs}')
else:
pb = enumerate(train_loader)
for i, batch in pb:
iter_start_time = time.time()
adjust_learning_rate(epoch, optimizer, learning_rate=Config.learning_rate,
anneal_steps=Config.anneal_steps, anneal_factor=Config.anneal_factor)
model.zero_grad()
x, y, num_items = batch_to_gpu(batch)
y_pred = model(x)
loss = balance_loss(x, y, y_pred, criterion) if Config.use_loss_coefficients else criterion(y_pred, y)
if distributed_run:
reduced_loss = reduce_tensor(loss.data, args.world_size)
reduced_num_items = reduce_tensor(num_items.data, 1)
else:
reduced_loss = loss.item()
reduced_num_items = num_items.item()
if np.isnan(reduced_loss):
raise Exception('loss is NaN')
train_epoch_avg_loss += reduced_loss
num_iters += 1
# Accumulate number of items processed in this epoch
reduced_num_items_epoch += reduced_num_items
if Config.amp_run:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(
amp.master_params(optimizer), Config.grad_clip_thresh)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(
model.parameters(), Config.grad_clip_thresh)
optimizer.step()
iteration += 1
iter_stop_time = time.time()
iter_time = iter_stop_time - iter_start_time
items_per_sec = reduced_num_items/iter_time
train_epoch_avg_items_per_sec += items_per_sec
epoch_stop_time = time.time()
epoch_time = epoch_stop_time - epoch_start_time
train_epoch_items_per_sec = reduced_num_items_epoch / epoch_time
train_epoch_avg_items_per_sec = train_epoch_avg_items_per_sec / num_iters if num_iters > 0 else 0.0
train_epoch_avg_loss = train_epoch_avg_loss / num_iters if num_iters > 0 else 0.0
epoch_val_loss = validate(model, criterion, valset, Config.batch_size, args.world_size,
collate_fn, distributed_run, batch_to_gpu)
if args.rank == 0:
tensorboard_writer.add_scalar(tag='train_stats/epoch_items_per_sec',
scalar_value=train_epoch_items_per_sec,
global_step=epoch)
tensorboard_writer.add_scalar(tag='train_stats/epoch_avg_items_per_sec',
scalar_value=train_epoch_avg_items_per_sec,
global_step=epoch)
tensorboard_writer.add_scalar(tag='train_stats/epoch_time',
scalar_value=epoch_time,
global_step=epoch)
tensorboard_writer.add_scalar(tag='epoch_avg_loss/train',
scalar_value=train_epoch_avg_loss,
global_step=epoch)
tensorboard_writer.add_scalar(tag='epoch_avg_loss/val',
scalar_value=epoch_val_loss,
global_step=epoch)
if epoch != 0 and epoch % Config.epochs_per_checkpoint == 0 and args.rank == 0:
checkpoint_path = os.path.join(checkpoint_directory, 'checkpoint_{}'.format(epoch))
save_checkpoint(model, epoch, model_config, optimizer, checkpoint_path)
# Save test audio files to tensorboard
total = len(Config.phrases['speaker_ids']) * len(Config.phrases['texts'])
if Config.use_emotions:
total *= len(PConfig.emo_id_map)
generation_pb = tqdm(
enumerate(save_sample(model_name, checkpoint_path)),
total=total
)
for i, (speaker_id, emotion, sample, alignment, mel) in generation_pb:
sample = remove_crackle(sample, Config.wdth, Config.snst)
tag = 'epoch_{}/infer:speaker_{}_sample_{}'.format(epoch, speaker_id, i)
tag = '{}_emotion_{}'.format(tag, emotion) if Config.use_emotions else tag
# Don't add audio to tb if it's too large
if mel.shape[-1] < Config.max_frames:
tensorboard_writer.add_audio(tag=tag, snd_tensor=sample, sample_rate=Config.sampling_rate)
fig = plt.figure(figsize=(10, 10))
plt.imshow(alignment, aspect='auto')
tensorboard_writer.add_figure(tag=tag, figure=fig)
if args.rank == 0:
tensorboard_writer.close()
if __name__ == '__main__':
main()