-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathpreprocess.py
248 lines (197 loc) · 8.75 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import re
import time
import shutil
import pathlib
import librosa
import argparse
import importlib
from shutil import copyfile
from multiprocessing import Pool
import json
import numpy as np
import pandas as pd
from scipy.io import wavfile
from tqdm import tqdm
# Parse args
parser = argparse.ArgumentParser(description='Pre-processing')
parser.add_argument('--exp', type=str, default=None, required=True, help='Name of an experiment for configs setting.')
args = parser.parse_args()
# Prepare config
shutil.copyfile(os.path.join('configs', 'experiments', args.exp + '.py'), os.path.join('configs', '__init__.py'))
# Reload Config
configs = importlib.import_module('configs')
configs = importlib.reload(configs)
Config = configs.PreprocessingConfig
# Config dependent imports
from tacotron2.text import text_to_sequence
np.random.seed(42)
def process(speaker_path, speaker_name, speaker_id, process_audio=True, emotion_present=False):
"""
Parses 'metadata.csv'.
Args:
speaker_path: path to the folder with raw data and file 'metadata.csv'
speaker_name: e.g. 'linda_johnson'
speaker_id: e.d. 1
process_audio: flag where to trim and change format using ffmpeg comand
emotion_present: flag which indicates whether emotion is present in speaker data
Returns:
jobs: list of tuples to be processed by mapper
"""
with open(os.path.join(speaker_path, 'metadata.csv'), 'r') as f:
jobs = []
output_path = os.path.join(Config.output_directory, speaker_name)
output_audio_path = os.path.join(output_path, 'wavs')
pathlib.Path(output_audio_path).mkdir(parents=True, exist_ok=True)
emotion = 'neutral-normal'
for line in f:
parts = line.strip().split('|')
file_name = parts[0]
text = parts[1]
if len(parts) == 3:
if emotion_present:
text = parts[1]
emotion = parts[2]
else:
text = parts[2]
if not file_name.endswith('.wav'):
file_name = file_name + '.wav'
input_file_path = os.path.join(speaker_path, 'wavs', file_name)
final_file_path = os.path.join(output_audio_path, file_name)
jobs.append((input_file_path, final_file_path, text, speaker_name, speaker_id, emotion, process_audio))
return jobs
def mapper(job):
"""
Measures duration of audio and length of text.
If speaker_data['process_audio'] == True, trims audio file and changes its format using ffmpeg.
Args:
job: list of tuples (
path to the audio file,
path where to put the processed audio file,
text transcription of audio,
name of speaker e.g. 'linda_johnson'
speaker id e.g. 1,
emotion e.g. 'neutral-normal',
process audio flag do or do not trimming and ffmpeg commands
)
Returns: list of tuples (
full path to processed audio file,
text,
name of speaker,
speaker id,
emotion,
length of text transcription of audio file,
duration of audio
)
"""
fin, fout, text, speaker_name, speaker_id, emotion, process_audio = job
seq = text_to_sequence(text, ['english_cleaners'])
data, _ = librosa.load(fin, sr=Config.sr)
if process_audio:
data, _ = librosa.effects.trim(data, top_db=Config.top_db)
duration = librosa.get_duration(data)
match = re.match('(.*)(.wav)', fout)
fint = f'{match.group(1)}-temp{match.group(2)}'
wavfile.write(fint, Config.sr, data)
command = 'ffmpeg -y -i {} -acodec pcm_s16le -ac 1 -ar {} {} -nostats -loglevel 0'.format(fint, Config.sr, fout)
os.system(command)
os.remove(fint)
else:
duration = librosa.get_duration(data)
copyfile(fin, fout)
return fout, text, speaker_name, speaker_id, emotion, len(seq), duration
def balance_coefs(distribution, key):
"""
:param distribution: pd.DataFrame with file data.csv
:param key:
:return: dictionary with keys - dist[key].values, values - coefficients for loss balancing
"""
true_balance = pd.DataFrame(distribution[key].value_counts() / len(distribution))
balance = pd.DataFrame({'true_balance': true_balance[key],
'sqrt_balance': np.sqrt(true_balance[key])})
sum_sqrts = sum(balance['sqrt_balance'])
balance['sqrt_div_sum_sqrts'] = balance['sqrt_balance'] / sum_sqrts
balance['root'] = np.sqrt(np.divide(sum_sqrts, balance['sqrt_div_sum_sqrts']))
sum_roots = sum(balance['root'])
balance['final_balance'] = balance['root'] / sum_roots
return balance['final_balance'].to_dict()
def main():
"""
Loads metadata.csv and audio files from wavs directory or restores from data.csv
Saves data.csv, train.txt, val.txt
and coefficients_emotions.json, coefficients_emotions.json for loss balancing
"""
if Config.start_from_preprocessed:
distribution = pd.read_csv(os.path.join(Config.output_directory, 'data.csv'), sep='|')
print('Loaded data.csv')
else:
jobs = []
for speaker_data in tqdm(Config.data):
for speaker_path, dirs, files in os.walk(speaker_data['path']):
if 'wavs' in dirs and 'metadata.csv' in files:
speaker_name = speaker_data['path'].split('/')[-1]
speaker_id = speaker_data['speaker_id']
process_audio = speaker_data['process_audio']
emotion_present = speaker_data['emotion_present']
sub_jobs = process(speaker_path, speaker_name, speaker_id, process_audio, emotion_present)
jobs += sub_jobs
print('Files to convert:', len(jobs))
time.sleep(5)
with Pool(Config.cpus) as p:
results = p.map(mapper, jobs)
distribution = pd.DataFrame({
'path': [r[0] for r in results],
'text': [r[1] for r in results],
'speaker_name': [r[2] for r in results],
'speaker_id': [r[3] for r in results],
'emotion': [r[4] for r in results],
'text_len': [r[5] for r in results],
'duration': [r[6] for r in results]
})
distribution['emotion_id'] = distribution['emotion'].map(Config.emo_id_map)
distribution.to_csv(os.path.join(Config.output_directory, 'data.csv'), sep='|', index=False)
print('Saved to data.csv')
speakers = set(distribution['speaker_name'].unique())
maxt = Config.text_limit
maxd = Config.dur_limit
if Config.limit_by in speakers:
limiting_distribution = distribution[distribution['speaker_name'] == Config.limit_by]
mind = min(limiting_distribution['duration'])
maxd = max(limiting_distribution['duration'])
mint = min(limiting_distribution['text_len'])
maxt = max(limiting_distribution['text_len'])
print('Min {} text: {}'.format(Config.limit_by, mint))
print('Max {} text: {}'.format(Config.limit_by, maxt))
print('Min {} dur: {}'.format(Config.limit_by, mind))
print('Max {} dur: {}'.format(Config.limit_by, maxd))
print('----------------------------------------------')
trains, vals = [], []
for speaker_data in Config.data:
speaker_name = speaker_data['path'].split('/')[-1]
df = distribution[distribution['speaker_name'] == speaker_name]
df = df[(df['text_len'] <= maxt) & (df['text_len'] >= 1) &
(df['duration'] <= maxd) & (df['duration'] >= Config.minimum_viable_dur)]
df = df[['path', 'text', 'speaker_id', 'emotion_id']]
msk = (np.random.rand(len(df)) < 0.95)
train = df[msk]
val = df[~msk]
if len(train) > Config.n:
train = train.sample(Config.n, random_state=42)
print('Train set for {} is: {}'.format(speaker_name, len(train)))
print('Val set for {} is: {}'.format(speaker_name, len(val)))
print('----------------------------------------------')
trains.append(train)
vals.append(val)
train = pd.concat(trains)
val = pd.concat(vals)
e_coefs = balance_coefs(train, 'emotion_id')
with open(os.path.join(Config.output_directory, 'emotion_coefficients.json'), 'w') as json_file:
json.dump(e_coefs, json_file)
s_coefs = balance_coefs(train, 'speaker_id')
with open(os.path.join(Config.output_directory, 'speaker_coefficients.json'), 'w') as json_file:
json.dump(s_coefs, json_file)
train.to_csv(os.path.join(Config.output_directory, 'train.txt'), sep='|', index=False, header=False)
val.to_csv(os.path.join(Config.output_directory, 'val.txt'), sep='|', index=False, header=False)
print('Done!')
if __name__ == '__main__':
main()