-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnoticias_tag.py
50 lines (39 loc) · 1.5 KB
/
noticias_tag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import random
import nltk
import csv
from nltk.corpus import stopwords
stop_words = set(stopwords.words('spanish'))
def tokenize(doc):
tokens = nltk.word_tokenize(doc.lower())
##remove stopwords
##remove non alphanumeric
#posiblemente agregar NGRAMS (aveces es peor)
#tokens = [stem(t) for t in tokens]
return tokens
def stem(token):
pass
def document_features(document,word_features):
document_words = set(document)
features = {}
for word in word_features:
features['contains({})'.format(word)] = (word in document_words)
return features
with open('noticias.csv', newline='') as csvfile:
data = list(csv.reader(csvfile))
#quitamos la primera fila, los headers
data = data[1:]
random.shuffle(data)
#quitamos las otras columnas
documents = [(doc.lower(),tag) for url,titulo,doc,source,tag in data]
#tokenization
documents = [(tokenize(doc),tag) for doc,tag in documents]
#aqui deben sacar la lista de todas las palabras entre todos los docs para el bag of words
all_words = nltk.FreqDist('array con todos los tokens')
word_features = list(all_words)[:2000]
#poner documentos en el formato que acepta el clasificador ([caracteristicas],'tag')
#tienen que usar la funciona para extraer las caracteristicas (document_features())
featuresets = []
train_set, test_set = featuresets[100:], featuresets[:100]
classifier = nltk.NaiveBayesClassifier.train(train_set)
print(nltk.classify.accuracy(classifier, test_set))
print(classifier.show_most_informative_features(50))