-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtransformations.py
194 lines (159 loc) · 9.67 KB
/
transformations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"Vectorized transformation functions for mobile sensor time series"
import itertools
import numpy as np
import scipy.interpolate
__author__ = "C. I. Tang"
__copyright__ = "Copyright (C) 2021 C. I. Tang"
"""
Complementing the work of Tang et al.: SelfHAR: Improving Human Activity Recognition through Self-training with Unlabeled Data
@article{10.1145/3448112,
author = {Tang, Chi Ian and Perez-Pozuelo, Ignacio and Spathis, Dimitris and Brage, Soren and Wareham, Nick and Mascolo, Cecilia},
title = {SelfHAR: Improving Human Activity Recognition through Self-Training with Unlabeled Data},
year = {2021},
issue_date = {March 2021},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {5},
number = {1},
url = {https://doi.org/10.1145/3448112},
doi = {10.1145/3448112},
abstract = {Machine learning and deep learning have shown great promise in mobile sensing applications, including Human Activity Recognition. However, the performance of such models in real-world settings largely depends on the availability of large datasets that captures diverse behaviors. Recently, studies in computer vision and natural language processing have shown that leveraging massive amounts of unlabeled data enables performance on par with state-of-the-art supervised models.In this work, we present SelfHAR, a semi-supervised model that effectively learns to leverage unlabeled mobile sensing datasets to complement small labeled datasets. Our approach combines teacher-student self-training, which distills the knowledge of unlabeled and labeled datasets while allowing for data augmentation, and multi-task self-supervision, which learns robust signal-level representations by predicting distorted versions of the input.We evaluated SelfHAR on various HAR datasets and showed state-of-the-art performance over supervised and previous semi-supervised approaches, with up to 12% increase in F1 score using the same number of model parameters at inference. Furthermore, SelfHAR is data-efficient, reaching similar performance using up to 10 times less labeled data compared to supervised approaches. Our work not only achieves state-of-the-art performance in a diverse set of HAR datasets, but also sheds light on how pre-training tasks may affect downstream performance.},
journal = {Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.},
month = mar,
articleno = {36},
numpages = {30},
keywords = {semi-supervised training, human activity recognition, unlabeled data, self-supervised training, self-training, deep learning}
}
Access to Article:
https://doi.org/10.1145/3448112
https://dl.acm.org/doi/abs/10.1145/3448112
Contact: [email protected]
Copyright (C) 2021 C. I. Tang
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
"""
An re-implemention of
T. T. Um et al., “Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks,” in Proceedings of the 19th ACM International Conference on Multimodal Interaction, ser. ICMI 2017. New York, NY, USA: ACM, 2017, pp. 216–220.
https://dl.acm.org/citation.cfm?id=3136817
https://arxiv.org/abs/1706.00527
@inproceedings{TerryUm_ICMI2017, author = {Um, Terry T. and Pfister, Franz M. J. and Pichler, Daniel and Endo, Satoshi and Lang, Muriel and Hirche, Sandra and Fietzek, Urban and Kuli\'{c}, Dana}, title = {Data Augmentation of Wearable Sensor Data for Parkinson's Disease Monitoring Using Convolutional Neural Networks}, booktitle = {Proceedings of the 19th ACM International Conference on Multimodal Interaction}, series = {ICMI 2017}, year = {2017}, isbn = {978-1-4503-5543-8}, location = {Glasgow, UK}, pages = {216--220}, numpages = {5}, doi = {10.1145/3136755.3136817}, acmid = {3136817}, publisher = {ACM}, address = {New York, NY, USA}, keywords = {Parkinson\'s disease, convolutional neural networks, data augmentation, health monitoring, motor state detection, wearable sensor}, }
"""
def noise_transform_vectorized(X, sigma=0.05):
"""
Adding random Gaussian noise with mean 0
"""
noise = np.random.normal(loc=0, scale=sigma, size=X.shape)
return X + noise
def scaling_transform_vectorized(X, sigma=0.1):
"""
Scaling by a random factor
"""
scaling_factor = np.random.normal(loc=1.0, scale=sigma, size=(X.shape[0], 1, X.shape[2]))
return X * scaling_factor
def rotation_transform_vectorized(X):
"""
Applying a random 3D rotation
"""
axes = np.random.uniform(low=-1, high=1, size=(X.shape[0], X.shape[2]))
angles = np.random.uniform(low=-np.pi, high=np.pi, size=(X.shape[0]))
matrices = axis_angle_to_rotation_matrix_3d_vectorized(axes, angles)
return np.matmul(X, matrices)
def axis_angle_to_rotation_matrix_3d_vectorized(axes, angles):
"""
Get the rotational matrix corresponding to a rotation of (angle) radian around the axes
Reference: the Transforms3d package - transforms3d.axangles.axangle2mat
Formula: http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle
"""
axes = axes / np.linalg.norm(axes, ord=2, axis=1, keepdims=True)
x = axes[:, 0]; y = axes[:, 1]; z = axes[:, 2]
c = np.cos(angles)
s = np.sin(angles)
C = 1 - c
xs = x*s; ys = y*s; zs = z*s
xC = x*C; yC = y*C; zC = z*C
xyC = x*yC; yzC = y*zC; zxC = z*xC
m = np.array([
[ x*xC+c, xyC-zs, zxC+ys ],
[ xyC+zs, y*yC+c, yzC-xs ],
[ zxC-ys, yzC+xs, z*zC+c ]])
matrix_transposed = np.transpose(m, axes=(2,0,1))
return matrix_transposed
def negate_transform_vectorized(X):
"""
Inverting the signals
"""
return X * -1
def time_flip_transform_vectorized(X):
"""
Reversing the direction of time
"""
return X[:, ::-1, :]
def channel_shuffle_transform_vectorized(X):
"""
Shuffling the different channels
Note: it might consume a lot of memory if the number of channels is high
"""
channels = range(X.shape[2])
all_channel_permutations = np.array(list(itertools.permutations(channels))[1:])
random_permutation_indices = np.random.randint(len(all_channel_permutations), size=(X.shape[0]))
permuted_channels = all_channel_permutations[random_permutation_indices]
X_transformed = X[np.arange(X.shape[0])[:, np.newaxis, np.newaxis], np.arange(X.shape[1])[np.newaxis, :, np.newaxis], permuted_channels[:, np.newaxis, :]]
return X_transformed
def time_segment_permutation_transform_improved(X, num_segments=4):
"""
Randomly scrambling sections of the signal
"""
segment_points_permuted = np.random.choice(X.shape[1], size=(X.shape[0], num_segments))
segment_points = np.sort(segment_points_permuted, axis=1)
X_transformed = np.empty(shape=X.shape)
for i, (sample, segments) in enumerate(zip(X, segment_points)):
# print(sample.shape)
splitted = np.array(np.split(sample, np.append(segments, X.shape[1])))
np.random.shuffle(splitted)
concat = np.concatenate(splitted, axis=0)
X_transformed[i] = concat
return X_transformed
def get_cubic_spline_interpolation(x_eval, x_data, y_data):
"""
Get values for the cubic spline interpolation
"""
cubic_spline = scipy.interpolate.CubicSpline(x_data, y_data)
return cubic_spline(x_eval)
def time_warp_transform_improved(X, sigma=0.2, num_knots=4):
"""
Stretching and warping the time-series
"""
time_stamps = np.arange(X.shape[1])
knot_xs = np.arange(0, num_knots + 2, dtype=float) * (X.shape[1] - 1) / (num_knots + 1)
spline_ys = np.random.normal(loc=1.0, scale=sigma, size=(X.shape[0] * X.shape[2], num_knots + 2))
spline_values = np.array([get_cubic_spline_interpolation(time_stamps, knot_xs, spline_ys_individual) for spline_ys_individual in spline_ys])
cumulative_sum = np.cumsum(spline_values, axis=1)
distorted_time_stamps_all = cumulative_sum / cumulative_sum[:, -1][:, np.newaxis] * (X.shape[1] - 1)
X_transformed = np.empty(shape=X.shape)
for i, distorted_time_stamps in enumerate(distorted_time_stamps_all):
X_transformed[i // X.shape[2], :, i % X.shape[2]] = np.interp(time_stamps, distorted_time_stamps, X[i // X.shape[2], :, i % X.shape[2]])
return X_transformed
def time_warp_transform_low_cost(X, sigma=0.2, num_knots=4, num_splines=150):
"""
Stretching and warping the time-series (low cost)
"""
time_stamps = np.arange(X.shape[1])
knot_xs = np.arange(0, num_knots + 2, dtype=float) * (X.shape[1] - 1) / (num_knots + 1)
spline_ys = np.random.normal(loc=1.0, scale=sigma, size=(num_splines, num_knots + 2))
spline_values = np.array([get_cubic_spline_interpolation(time_stamps, knot_xs, spline_ys_individual) for spline_ys_individual in spline_ys])
cumulative_sum = np.cumsum(spline_values, axis=1)
distorted_time_stamps_all = cumulative_sum / cumulative_sum[:, -1][:, np.newaxis] * (X.shape[1] - 1)
random_indices = np.random.randint(num_splines, size=(X.shape[0] * X.shape[2]))
X_transformed = np.empty(shape=X.shape)
for i, random_index in enumerate(random_indices):
X_transformed[i // X.shape[2], :, i % X.shape[2]] = np.interp(time_stamps, distorted_time_stamps_all[random_index], X[i // X.shape[2], :, i % X.shape[2]])
return X_transformed