From fec00922343876cf03970fbda63cd280ff3db0de Mon Sep 17 00:00:00 2001 From: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com> Date: Thu, 10 Oct 2024 18:40:49 +0200 Subject: [PATCH] Include custom textual inversion to diffusers pipelines (#938) * added textual inversion * added tests * fix textual inversion loader and test it * fix * slow test * fix * mark as run slow to test with CI --- optimum/intel/openvino/loaders.py | 385 +++---------------- optimum/intel/openvino/modeling_diffusion.py | 29 +- optimum/intel/openvino/utils.py | 4 +- tests/openvino/test_diffusion.py | 76 +++- 4 files changed, 151 insertions(+), 343 deletions(-) diff --git a/optimum/intel/openvino/loaders.py b/optimum/intel/openvino/loaders.py index fc5ae97495..5da2877002 100644 --- a/optimum/intel/openvino/loaders.py +++ b/optimum/intel/openvino/loaders.py @@ -13,26 +13,18 @@ # limitations under the License. import logging -import warnings from typing import Dict, List, Optional, Union -import torch -from diffusers.utils import _get_model_file - -from ..utils.import_utils import is_safetensors_available - - -if is_safetensors_available(): - import safetensors - import openvino -from huggingface_hub.constants import HF_HUB_OFFLINE, HUGGINGFACE_HUB_CACHE +import torch +from diffusers.loaders.textual_inversion import TextualInversionLoaderMixin, load_textual_inversion_state_dicts +from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE from openvino.runtime import Type from openvino.runtime import opset11 as ops from openvino.runtime.passes import Manager, Matcher, MatcherPass, WrapType from transformers import PreTrainedTokenizer -from .utils import TEXTUAL_INVERSION_EMBEDDING_KEY, TEXTUAL_INVERSION_NAME, TEXTUAL_INVERSION_NAME_SAFE +from .utils import TEXTUAL_INVERSION_EMBEDDING_KEY try: @@ -49,17 +41,17 @@ class InsertTextEmbedding(MatcherPass): OpenVINO ngraph transformation for inserting pre-trained texual inversion embedding to text encoder """ - def __init__(self, token_ids_and_embeddings): + def __init__(self, tokens_ids, embeddings): MatcherPass.__init__(self) - self.model_changed = False + param = WrapType("opset1.Constant") def callback(matcher: Matcher) -> bool: root = matcher.get_match_root() - if root.get_friendly_name() == TEXTUAL_INVERSION_EMBEDDING_KEY: + if root.get_friendly_name() == TEXTUAL_INVERSION_EMBEDDING_KEY: # there should be a better way to do this add_ti = root consumers = matcher.get_match_value().get_target_inputs() - for token_id, embedding in token_ids_and_embeddings: + for token_id, embedding in zip(tokens_ids, embeddings): ti_weights = ops.constant(embedding, Type.f32, name=str(token_id)) ti_weights_unsqueeze = ops.unsqueeze(ti_weights, axes=0) add_ti = ops.concat( @@ -81,341 +73,74 @@ def callback(matcher: Matcher) -> bool: # Adapted from diffusers.loaders.TextualInversionLoaderMixin -class OVTextualInversionLoaderMixin: - r""" - Load textual inversion tokens and embeddings to the tokenizer and text encoder. - """ - - def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): - r""" - Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to - be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual - inversion token or if the textual inversion token is a single vector, the input prompt is returned. - - Parameters: - prompt (`str` or list of `str`): - The prompt or prompts to guide the image generation. - tokenizer (`PreTrainedTokenizer`): - The tokenizer responsible for encoding the prompt into input tokens. - - Returns: - `str` or list of `str`: The converted prompt - """ - if not isinstance(prompt, List): - prompts = [prompt] - else: - prompts = prompt - - prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts] - - if not isinstance(prompt, List): - return prompts[0] - - return prompts - - def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"): - r""" - Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds - to a multi-vector textual inversion embedding, this function will process the prompt so that the special token - is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual - inversion token or a textual inversion token that is a single vector, the input prompt is simply returned. - - Parameters: - prompt (`str`): - The prompt to guide the image generation. - tokenizer (`PreTrainedTokenizer`): - The tokenizer responsible for encoding the prompt into input tokens. - - Returns: - `str`: The converted prompt - """ - tokens = tokenizer.tokenize(prompt) - unique_tokens = set(tokens) - for token in unique_tokens: - if token in tokenizer.added_tokens_encoder: - replacement = token - i = 1 - while f"{token}_{i}" in tokenizer.added_tokens_encoder: - replacement += f" {token}_{i}" - i += 1 - - prompt = prompt.replace(token, replacement) - - return prompt - +class OVTextualInversionLoaderMixin(TextualInversionLoaderMixin): def load_textual_inversion( self, pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]], token: Optional[Union[str, List[str]]] = None, + tokenizer: Optional["PreTrainedTokenizer"] = None, # noqa: F821 + text_encoder: Optional["openvino.runtime.Model"] = None, # noqa: F821 **kwargs, ): - r""" - Load textual inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and - Automatic1111 formats are supported). - - Parameters: - pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`): - Can be either one of the following or a list of them: - - - A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a - pretrained model hosted on the Hub. - - A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual - inversion weights. - - A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights. - - A [torch state - dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). - - token (`str` or `List[str]`, *optional*): - Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a - list, then `token` must also be a list of equal length. - weight_name (`str`, *optional*): - Name of a custom weight file. This should be used when: - - - The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight - name such as `text_inv.bin`. - - The saved textual inversion file is in the Automatic1111 format. - cache_dir (`Union[str, os.PathLike]`, *optional*): - Path to a directory where a downloaded pretrained model configuration is cached if the standard cache - is not used. - force_download (`bool`, *optional*, defaults to `False`): - Whether or not to force the (re-)download of the model weights and configuration files, overriding the - cached versions if they exist. - resume_download (`bool`, *optional*, defaults to `False`): - Whether or not to resume downloading the model weights and configuration files. If set to `False`, any - incompletely downloaded files are deleted. - proxies (`Dict[str, str]`, *optional*): - A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', - 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. - local_files_only (`bool`, *optional*, defaults to `False`): - Whether to only load local model weights and configuration files or not. If set to `True`, the model - won't be downloaded from the Hub. - use_auth_token (Optional[Union[bool, str]], defaults to `None`): - Deprecated. Please use `token` instead. - token (Optional[Union[bool, str]], defaults to `None`): - The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated - when running `huggingface-cli login` (stored in `~/.huggingface`). - revision (`str`, *optional*, defaults to `"main"`): - The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier - allowed by Git. - subfolder (`str`, *optional*, defaults to `""`): - The subfolder location of a model file within a larger model repository on the Hub or locally. - mirror (`str`, *optional*): - Mirror source to resolve accessibility issues if you're downloading a model in China. We do not - guarantee the timeliness or safety of the source, and you should refer to the mirror site for more - information. - - Example: - - To load a textual inversion embedding vector in 🤗 Diffusers format: - - ```py - from optimum.intel import OVStableDiffusionPipeline - - model_id = "runwayml/stable-diffusion-v1-5" - pipe = OVStableDiffusionPipeline.from_pretrained(model_id, compile=False) - - pipe.load_textual_inversion("sd-concepts-library/cat-toy") - pipe.compile() - - prompt = "A <cat-toy> backpack" - - image = pipe(prompt, num_inference_steps=50).images[0] - image.save("cat-backpack.png") - ``` - - To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first - (for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector - locally: - - ```py - from optimum.intel import OVStableDiffusionPipeline - - model_id = "runwayml/stable-diffusion-v1-5" - pipe = StableDiffusionPipeline.from_pretrained(model_id, compile=False) - - pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2") - pipe.compile() - - prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details." - - image = pipe(prompt, num_inference_steps=50).images[0] - image.save("character.png") - ``` - """ - - if not hasattr(self, "tokenizer") or not isinstance(self.tokenizer, PreTrainedTokenizer): + if not hasattr(self, "tokenizer"): raise ValueError( - f"{self.__class__.__name__} requires `self.tokenizer` of type `PreTrainedTokenizer` for calling" - f" `{self.load_textual_inversion.__name__}`" + f"{self.__class__.__name__} requires `self.tokenizer` for calling `{self.load_textual_inversion.__name__}`" ) - - if not hasattr(self, "text_encoder") or not isinstance(self.text_encoder.model, openvino.runtime.Model): + elif not isinstance(self.tokenizer, PreTrainedTokenizer): raise ValueError( - f"{self.__class__.__name__} requires `self.text_encoder.model` of type `openvino.runtime.Model` for calling" - f" `{self.load_textual_inversion.__name__}`" - ) - - cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) - force_download = kwargs.pop("force_download", False) - resume_download = kwargs.pop("resume_download", False) - proxies = kwargs.pop("proxies", None) - local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) - use_auth_token = kwargs.pop("use_auth_token", None) - token = kwargs.pop("token", None) - revision = kwargs.pop("revision", None) - subfolder = kwargs.pop("subfolder", None) - weight_name = kwargs.pop("weight_name", None) - use_safetensors = kwargs.pop("use_safetensors", None) - - if use_auth_token is not None: - warnings.warn( - "The `use_auth_token` argument is deprecated and will be removed soon. Please use the `token` argument instead.", - FutureWarning, + f"{self.__class__.__name__} requires `self.tokenizer` of type `PreTrainedTokenizer` for calling `{self.load_textual_inversion.__name__}`" ) - if token is not None: - raise ValueError("You cannot use both `use_auth_token` and `token` arguments at the same time.") - token = use_auth_token - if use_safetensors and not is_safetensors_available(): + if not hasattr(self, "text_encoder"): raise ValueError( - "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors" + f"{self.__class__.__name__} requires `self.text_encoder` for calling `{self.load_textual_inversion.__name__}`" ) - - allow_pickle = False - if use_safetensors is None: - use_safetensors = is_safetensors_available() - allow_pickle = True - - user_agent = { - "file_type": "text_inversion", - "framework": "pytorch", - } - - if not isinstance(pretrained_model_name_or_path, list): - pretrained_model_name_or_paths = [pretrained_model_name_or_path] - else: - pretrained_model_name_or_paths = pretrained_model_name_or_path - - if isinstance(token, str): - tokens = [token] - elif token is None: - tokens = [None] * len(pretrained_model_name_or_paths) - else: - tokens = token - - if len(pretrained_model_name_or_paths) != len(tokens): + elif not isinstance(self.text_encoder.model, openvino.runtime.Model): raise ValueError( - f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)}" - f"Make sure both lists have the same length." + f"{self.__class__.__name__} requires `self.text_encoder` of type `openvino.runtime.Model` for calling `{self.load_textual_inversion.__name__}`" ) - valid_tokens = [t for t in tokens if t is not None] - if len(set(valid_tokens)) < len(valid_tokens): - raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}") - - token_ids_and_embeddings = [] - - for pretrained_model_name_or_path, token in zip(pretrained_model_name_or_paths, tokens): - if not isinstance(pretrained_model_name_or_path, dict): - # 1. Load textual inversion file - model_file = None - # Let's first try to load .safetensors weights - if (use_safetensors and weight_name is None) or ( - weight_name is not None and weight_name.endswith(".safetensors") - ): - try: - model_file = _get_model_file( - pretrained_model_name_or_path, - weights_name=weight_name or TEXTUAL_INVERSION_NAME_SAFE, - cache_dir=cache_dir, - force_download=force_download, - resume_download=resume_download, - proxies=proxies, - local_files_only=local_files_only, - use_auth_token=token, # still uses use_auth_token - revision=revision, - subfolder=subfolder, - user_agent=user_agent, - ) - state_dict = safetensors.torch.load_file(model_file, device="cpu") - except Exception as e: - if not allow_pickle: - raise e - - model_file = None - - if model_file is None: - model_file = _get_model_file( - pretrained_model_name_or_path, - weights_name=weight_name or TEXTUAL_INVERSION_NAME, - cache_dir=cache_dir, - force_download=force_download, - resume_download=resume_download, - proxies=proxies, - local_files_only=local_files_only, - use_auth_token=token, # still uses use_auth_token - revision=revision, - subfolder=subfolder, - user_agent=user_agent, - ) - state_dict = torch.load(model_file, map_location="cpu") - else: - state_dict = pretrained_model_name_or_path - - # 2. Load token and embedding correcly from file - loaded_token = None - if isinstance(state_dict, torch.Tensor): - if token is None: + # 1. Set correct tokenizer and text encoder + tokenizer = tokenizer or getattr(self, "tokenizer", None) + text_encoder = text_encoder or getattr(self, "text_encoder", None) + + # 2. Normalize inputs + pretrained_model_name_or_paths = ( + [pretrained_model_name_or_path] + if not isinstance(pretrained_model_name_or_path, list) + else pretrained_model_name_or_path + ) + tokens = [token] if not isinstance(token, list) else token + if tokens[0] is None: + tokens = tokens * len(pretrained_model_name_or_paths) + + # 3. Check inputs + self._check_text_inv_inputs(tokenizer, text_encoder, pretrained_model_name_or_paths, tokens) + + # 4. Load state dicts of textual embeddings + state_dicts = load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs) + + # 4.1 Handle the special case when state_dict is a tensor that contains n embeddings for n tokens + if len(tokens) > 1 and len(state_dicts) == 1: + if isinstance(state_dicts[0], torch.Tensor): + state_dicts = list(state_dicts[0]) + if len(tokens) != len(state_dicts): raise ValueError( - "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`." + f"You have passed a state_dict contains {len(state_dicts)} embeddings, and list of tokens of length {len(tokens)} " + f"Make sure both have the same length." ) - embedding = state_dict - elif len(state_dict) == 1: - # diffusers - loaded_token, embedding = next(iter(state_dict.items())) - elif "string_to_param" in state_dict: - # A1111 - loaded_token = state_dict["name"] - embedding = state_dict["string_to_param"]["*"] - - if token is not None and loaded_token != token: - logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.") - else: - token = loaded_token - - embedding = embedding.detach().cpu().numpy() - # 3. Make sure we don't mess up the tokenizer or text encoder - vocab = self.tokenizer.get_vocab() - if token in vocab: - raise ValueError( - f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder." - ) - elif f"{token}_1" in vocab: - multi_vector_tokens = [token] - i = 1 - while f"{token}_{i}" in self.tokenizer.added_tokens_encoder: - multi_vector_tokens.append(f"{token}_{i}") - i += 1 + # 4. Retrieve tokens and embeddings + tokens, embeddings = self._retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer) - raise ValueError( - f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder." - ) - is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1 - if is_multi_vector: - tokens = [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])] - embeddings = [e for e in embedding] # noqa: C416 - else: - tokens = [token] - embeddings = [embedding[0]] if len(embedding.shape) > 1 else [embedding] - # add tokens and get ids - self.tokenizer.add_tokens(tokens) - token_ids = self.tokenizer.convert_tokens_to_ids(tokens) - token_ids_and_embeddings += zip(token_ids, embeddings) + # 5. Extend tokens and embeddings for multi vector + tokens, embeddings = self._extend_tokens_and_embeddings(tokens, embeddings, tokenizer) - logger.info(f"Loaded textual inversion embedding for {token}.") + # 7.4 add tokens to tokenizer (modified) + tokenizer.add_tokens(tokens) + token_ids = tokenizer.convert_tokens_to_ids(tokens) # Insert textual inversion embeddings to text encoder with OpenVINO ngraph transformation manager = Manager() - manager.register_pass(InsertTextEmbedding(token_ids_and_embeddings)) - manager.run_passes(self.text_encoder.model) + manager.register_pass(InsertTextEmbedding(token_ids, embeddings)) + manager.run_passes(text_encoder.model) diff --git a/optimum/intel/openvino/modeling_diffusion.py b/optimum/intel/openvino/modeling_diffusion.py index 81dc085df9..d5ee6ee22e 100644 --- a/optimum/intel/openvino/modeling_diffusion.py +++ b/optimum/intel/openvino/modeling_diffusion.py @@ -64,6 +64,7 @@ from ...exporters.openvino import main_export from .configuration import OVConfig, OVQuantizationMethod, OVWeightQuantizationConfig +from .loaders import OVTextualInversionLoaderMixin from .modeling_base import OVBaseModel from .utils import ( ONNX_WEIGHTS_NAME, @@ -1010,7 +1011,7 @@ def to(self, *args, **kwargs): self.encoder.to(*args, **kwargs) -class OVStableDiffusionPipeline(OVDiffusionPipeline, StableDiffusionPipeline): +class OVStableDiffusionPipeline(OVDiffusionPipeline, OVTextualInversionLoaderMixin, StableDiffusionPipeline): """ OpenVINO-powered stable diffusion pipeline corresponding to [diffusers.StableDiffusionPipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion#diffusers.StableDiffusionPipeline). """ @@ -1020,7 +1021,9 @@ class OVStableDiffusionPipeline(OVDiffusionPipeline, StableDiffusionPipeline): auto_model_class = StableDiffusionPipeline -class OVStableDiffusionImg2ImgPipeline(OVDiffusionPipeline, StableDiffusionImg2ImgPipeline): +class OVStableDiffusionImg2ImgPipeline( + OVDiffusionPipeline, OVTextualInversionLoaderMixin, StableDiffusionImg2ImgPipeline +): """ OpenVINO-powered stable diffusion pipeline corresponding to [diffusers.StableDiffusionImg2ImgPipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_img2img#diffusers.StableDiffusionImg2ImgPipeline). """ @@ -1030,7 +1033,9 @@ class OVStableDiffusionImg2ImgPipeline(OVDiffusionPipeline, StableDiffusionImg2I auto_model_class = StableDiffusionImg2ImgPipeline -class OVStableDiffusionInpaintPipeline(OVDiffusionPipeline, StableDiffusionInpaintPipeline): +class OVStableDiffusionInpaintPipeline( + OVDiffusionPipeline, OVTextualInversionLoaderMixin, StableDiffusionInpaintPipeline +): """ OpenVINO-powered stable diffusion pipeline corresponding to [diffusers.StableDiffusionInpaintPipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_inpaint#diffusers.StableDiffusionInpaintPipeline). """ @@ -1040,7 +1045,7 @@ class OVStableDiffusionInpaintPipeline(OVDiffusionPipeline, StableDiffusionInpai auto_model_class = StableDiffusionInpaintPipeline -class OVStableDiffusionXLPipeline(OVDiffusionPipeline, StableDiffusionXLPipeline): +class OVStableDiffusionXLPipeline(OVDiffusionPipeline, OVTextualInversionLoaderMixin, StableDiffusionXLPipeline): """ OpenVINO-powered stable diffusion pipeline corresponding to [diffusers.StableDiffusionXLPipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#diffusers.StableDiffusionXLPipeline). """ @@ -1063,7 +1068,9 @@ def _get_add_time_ids( return add_time_ids -class OVStableDiffusionXLImg2ImgPipeline(OVDiffusionPipeline, StableDiffusionXLImg2ImgPipeline): +class OVStableDiffusionXLImg2ImgPipeline( + OVDiffusionPipeline, OVTextualInversionLoaderMixin, StableDiffusionXLImg2ImgPipeline +): """ OpenVINO-powered stable diffusion pipeline corresponding to [diffusers.StableDiffusionXLImg2ImgPipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#diffusers.StableDiffusionXLImg2ImgPipeline). """ @@ -1100,7 +1107,9 @@ def _get_add_time_ids( return add_time_ids, add_neg_time_ids -class OVStableDiffusionXLInpaintPipeline(OVDiffusionPipeline, StableDiffusionXLInpaintPipeline): +class OVStableDiffusionXLInpaintPipeline( + OVDiffusionPipeline, OVTextualInversionLoaderMixin, StableDiffusionXLInpaintPipeline +): """ OpenVINO-powered stable diffusion pipeline corresponding to [diffusers.StableDiffusionXLInpaintPipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#diffusers.StableDiffusionXLInpaintPipeline). """ @@ -1137,7 +1146,9 @@ def _get_add_time_ids( return add_time_ids, add_neg_time_ids -class OVLatentConsistencyModelPipeline(OVDiffusionPipeline, LatentConsistencyModelPipeline): +class OVLatentConsistencyModelPipeline( + OVDiffusionPipeline, OVTextualInversionLoaderMixin, LatentConsistencyModelPipeline +): """ OpenVINO-powered stable diffusion pipeline corresponding to [diffusers.LatentConsistencyModelPipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/latent_consistency#diffusers.LatentConsistencyModelPipeline). """ @@ -1147,7 +1158,9 @@ class OVLatentConsistencyModelPipeline(OVDiffusionPipeline, LatentConsistencyMod auto_model_class = LatentConsistencyModelPipeline -class OVLatentConsistencyModelImg2ImgPipeline(OVDiffusionPipeline, LatentConsistencyModelImg2ImgPipeline): +class OVLatentConsistencyModelImg2ImgPipeline( + OVDiffusionPipeline, OVTextualInversionLoaderMixin, LatentConsistencyModelImg2ImgPipeline +): """ OpenVINO-powered stable diffusion pipeline corresponding to [diffusers.LatentConsistencyModelImg2ImgPipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/latent_consistency_img2img#diffusers.LatentConsistencyModelImg2ImgPipeline). """ diff --git a/optimum/intel/openvino/utils.py b/optimum/intel/openvino/utils.py index 4e8033880b..279a24818e 100644 --- a/optimum/intel/openvino/utils.py +++ b/optimum/intel/openvino/utils.py @@ -53,9 +53,7 @@ EXTERNAL_DATA_FORMAT_SIZE_LIMIT = 2 * 1024 * 1024 * 1024 -TEXTUAL_INVERSION_NAME = "learned_embeds.bin" -TEXTUAL_INVERSION_NAME_SAFE = "learned_embeds.safetensors" -TEXTUAL_INVERSION_EMBEDDING_KEY = "text_model.embeddings.token_embedding.weight" +TEXTUAL_INVERSION_EMBEDDING_KEY = "self.text_model.embeddings.token_embedding.weight" OV_TO_NP_TYPE = { "boolean": np.bool_, diff --git a/tests/openvino/test_diffusion.py b/tests/openvino/test_diffusion.py index 6271ff3e4e..687c1f5c02 100644 --- a/tests/openvino/test_diffusion.py +++ b/tests/openvino/test_diffusion.py @@ -15,6 +15,7 @@ import unittest import numpy as np +import pytest import torch from diffusers import ( AutoPipelineForImage2Image, @@ -25,6 +26,7 @@ from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker from diffusers.utils import load_image from parameterized import parameterized +from transformers.testing_utils import slow from utils_tests import MODEL_NAMES, SEED from optimum.intel.openvino import ( @@ -295,6 +297,30 @@ def test_height_width_properties(self, model_arch: str): self.assertEqual(ov_pipeline.height, height) self.assertEqual(ov_pipeline.width, width) + @pytest.mark.run_slow + @slow + @require_diffusers + def test_textual_inversion(self): + # for now we only test for stable-diffusion + # this is very slow and costly to run right now + + model_id = "runwayml/stable-diffusion-v1-5" + ti_id = "sd-concepts-library/cat-toy" + + inputs = self.generate_inputs() + inputs["prompt"] = "A <cat-toy> backpack" + + diffusers_pipeline = self.AUTOMODEL_CLASS.from_pretrained(model_id, safety_checker=None) + diffusers_pipeline.load_textual_inversion(ti_id) + + ov_pipeline = self.OVMODEL_CLASS.from_pretrained(model_id, compile=False, safety_checker=None) + ov_pipeline.load_textual_inversion(ti_id) + + diffusers_output = diffusers_pipeline(**inputs, generator=get_generator("pt", SEED)).images + ov_output = ov_pipeline(**inputs, generator=get_generator("pt", SEED)).images + + np.testing.assert_allclose(ov_output, diffusers_output, atol=1e-4, rtol=1e-2) + class OVPipelineForImage2ImageTest(unittest.TestCase): SUPPORTED_ARCHITECTURES = ["stable-diffusion", "stable-diffusion-xl", "latent-consistency"] @@ -348,7 +374,6 @@ def test_num_images_per_prompt(self, model_arch: str): def test_callback(self, model_arch: str): height, width, batch_size = 32, 64, 1 inputs = self.generate_inputs(height=height, width=width, batch_size=batch_size) - inputs["num_inference_steps"] = 3 class Callback: def __init__(self): @@ -484,6 +509,30 @@ def test_height_width_properties(self, model_arch: str): self.assertEqual(ov_pipeline.height, height) self.assertEqual(ov_pipeline.width, width) + @pytest.mark.run_slow + @slow + @require_diffusers + def test_textual_inversion(self): + # for now we only test for stable-diffusion + # this is very slow and costly to run right now + + model_id = "runwayml/stable-diffusion-v1-5" + ti_id = "sd-concepts-library/cat-toy" + + inputs = self.generate_inputs() + inputs["prompt"] = "A <cat-toy> backpack" + + diffusers_pipeline = self.AUTOMODEL_CLASS.from_pretrained(model_id, safety_checker=None) + diffusers_pipeline.load_textual_inversion(ti_id) + + ov_pipeline = self.OVMODEL_CLASS.from_pretrained(model_id, compile=False, safety_checker=None) + ov_pipeline.load_textual_inversion(ti_id) + + diffusers_output = diffusers_pipeline(**inputs, generator=get_generator("pt", SEED)).images + ov_output = ov_pipeline(**inputs, generator=get_generator("pt", SEED)).images + + np.testing.assert_allclose(ov_output, diffusers_output, atol=1e-4, rtol=1e-2) + class OVPipelineForInpaintingTest(unittest.TestCase): SUPPORTED_ARCHITECTURES = ["stable-diffusion", "stable-diffusion-xl"] @@ -542,7 +591,6 @@ def test_num_images_per_prompt(self, model_arch: str): def test_callback(self, model_arch: str): height, width, batch_size = 32, 64, 1 inputs = self.generate_inputs(height=height, width=width, batch_size=batch_size) - inputs["num_inference_steps"] = 3 class Callback: def __init__(self): @@ -677,3 +725,27 @@ def test_height_width_properties(self, model_arch: str): ) self.assertEqual(ov_pipeline.height, height) self.assertEqual(ov_pipeline.width, width) + + @pytest.mark.run_slow + @slow + @require_diffusers + def test_textual_inversion(self): + # for now we only test for stable-diffusion + # this is very slow and costly to run right now + + model_id = "runwayml/stable-diffusion-v1-5" + ti_id = "sd-concepts-library/cat-toy" + + inputs = self.generate_inputs() + inputs["prompt"] = "A <cat-toy> backpack" + + diffusers_pipeline = self.AUTOMODEL_CLASS.from_pretrained(model_id, safety_checker=None) + diffusers_pipeline.load_textual_inversion(ti_id) + + ov_pipeline = self.OVMODEL_CLASS.from_pretrained(model_id, compile=False, safety_checker=None) + ov_pipeline.load_textual_inversion(ti_id) + + diffusers_output = diffusers_pipeline(**inputs, generator=get_generator("pt", SEED)).images + ov_output = ov_pipeline(**inputs, generator=get_generator("pt", SEED)).images + + np.testing.assert_allclose(ov_output, diffusers_output, atol=1e-4, rtol=1e-2)