Official utilities to use the Hugging Face Hub API.
pnpm add @huggingface/hub
npm add @huggingface/hub
yarn add @huggingface/hub
// esm.sh
import { uploadFiles, listModels } from "https://esm.sh/@huggingface/hub"
// or npm:
import { uploadFiles, listModels } from "npm:@huggingface/hub"
Check out the full documentation.
For some of the calls, you need to create an account and generate an access token.
Learn how to find free models using the hub package in this interactive tutorial.
import * as hub from "@huggingface/hub";
import type { RepoDesignation } from "@huggingface/hub";
const repo: RepoDesignation = { type: "model", name: "myname/some-model" };
const {name: username} = await hub.whoAmI({accessToken: "hf_..."});
for await (const model of hub.listModels({search: {owner: username}, accessToken: "hf_..."})) {
console.log("My model:", model);
}
const specificModel = await hub.modelInfo({name: "openai-community/gpt2"});
await hub.checkRepoAccess({repo, accessToken: "hf_..."});
await hub.createRepo({ repo, accessToken: "hf_...", license: "mit" });
await hub.uploadFiles({
repo,
accessToken: "hf_...",
files: [
// path + blob content
{
path: "file.txt",
content: new Blob(["Hello World"]),
},
// Local file URL
pathToFileURL("./pytorch-model.bin"),
// Web URL
new URL("https://huggingface.co/xlm-roberta-base/resolve/main/tokenizer.json"),
// Path + Web URL
{
path: "myfile.bin",
content: new URL("https://huggingface.co/bert-base-uncased/resolve/main/pytorch_model.bin")
}
// Can also work with native File in browsers
],
});
// or
for await (const progressEvent of await hub.uploadFilesWithProgress({
repo,
accessToken: "hf_...",
files: [
...
],
})) {
console.log(progressEvent);
}
await hub.deleteFile({repo, accessToken: "hf_...", path: "myfile.bin"});
await (await hub.downloadFile({ repo, path: "README.md" })).text();
for await (const fileInfo of hub.listFiles({repo})) {
console.log(fileInfo);
}
await hub.deleteRepo({ repo, accessToken: "hf_..." });
It's possible to login using OAuth ("Sign in with HF").
This will allow you get an access token to use some of the API, depending on the scopes set inside the Space or the OAuth App.
import { oauthLoginUrl, oauthHandleRedirectIfPresent } from "@huggingface/hub";
const oauthResult = await oauthHandleRedirectIfPresent();
if (!oauthResult) {
// If the user is not logged in, redirect to the login page
window.location.href = await oauthLoginUrl();
}
// You can use oauthResult.accessToken, oauthResult.accessTokenExpiresAt and oauthResult.userInfo
console.log(oauthResult);
Checkout the demo: https://huggingface.co/spaces/huggingfacejs/client-side-oauth
The @huggingface/hub
package provide basic capabilities to scan the cache directory. Learn more about Manage huggingface_hub cache-system.
You can get the list of cached repositories using the scanCacheDir
function.
import { scanCacheDir } from "@huggingface/hub";
const result = await scanCacheDir();
console.log(result);
Note: this does not work in the browser
You can cache a file of a repository using the downloadFileToCacheDir
function.
import { downloadFileToCacheDir } from "@huggingface/hub";
const file = await downloadFileToCacheDir({
repo: 'foo/bar',
path: 'README.md'
});
console.log(file);
Note: this does not work in the browser
You can download an entire repository at a given revision in the cache directory using the snapshotDownload
function.
import { snapshotDownload } from "@huggingface/hub";
const directory = await snapshotDownload({
repo: 'foo/bar',
});
console.log(directory);
The code use internally the downloadFileToCacheDir
function.
Note: this does not work in the browser
When uploading large files, you may want to run the commit
calls inside a worker, to offload the sha256 computations.
Remote resources and local files should be passed as URL
whenever it's possible so they can be lazy loaded in chunks to reduce RAM usage. Passing a File
inside the browser's context is fine, because it natively behaves as a Blob
.
Under the hood, @huggingface/hub
uses a lazy blob implementation to load the file.
@huggingface/tasks
: Typings only