Skip to content

Latest commit

 

History

History
91 lines (49 loc) · 3.14 KB

激活函数.md

File metadata and controls

91 lines (49 loc) · 3.14 KB

【关于 激活函数】那些你不知道的事

一、动机篇

1.1 为什么要有激活函数?

  1. 数据角度:由于数据是线性不可分的,如果采用线性化,那么需要复杂的线性组合去逼近问题,因此需要非线性变换对数据分布进行重新映射;
  2. 线性模型的表达力问题:由于线性模型的表达能力不够,引入激活函数添加非线性因素

二、激活函数介绍篇

2.1 sigmoid 函数篇

2.1.1 什么是 sigmoid 函数?

  • 公式

$$\sigma(x)=\frac {1}{1+e^{-x}}$$

  • 图像

2.1.2 为什么选 sigmoid 函数 作为激活函数?

sigmoid 函数 能够把输入的连续实值变换为0和1之间的输出,特别的,如果是非常大的负数,那么输出就是0;如果是非常大的正数,输出就是1.

2.1.3 sigmoid 函数 有什么缺点?

  1. 在深度神经网络中梯度反向传递时导致梯度爆炸和梯度消失,其中梯度爆炸发生的概率非常小,而梯度消失发生的概率比较大;

  1. output 不是0均值(即zero-centered);
    1. 后果:会导致后一层的神经元将得到上一层输出的非0均值的信号作为输入。 产生的一个结果就是:x>0, f=wTx+b那么对w求局部梯度则都为正,这样在反向传播的过程中w要么都往正方向更新,要么都往负方向更新,导致有一种捆绑的效果;
  2. 幂函数耗时;

2.2 tanh 函数篇

2.2.1 什么是 tanh 函数?

  • 公式:

$$tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}$$

  • 图像

2.2.2 为什么选 tanh 函数 作为激活函数?

tanh 函数 能够 解决 sigmoid 函数 非 0 均值 问题

2.2.3 tanh 函数 有什么缺点?

  1. 梯度爆炸和梯度消失;
  2. 幂函数耗时;

2.3 relu 函数篇

2.3.1 什么是 relu 函数?

  • 公式

$$f(x)=max(0, x)$$

  • 图像

2.3.2 为什么选 relu 函数 作为激活函数?

  1. 解决了gradient vanishing问题 (在正区间)
  2. 计算速度非常快,只需要判断输入是否大于0
  3. 收敛速度远快于sigmoid和tanh

2.3.3 relu 函数 有什么缺点?

  1. ReLU的输出不是zero-centered;
  2. Dead ReLU Problem,指的是某些神经元可能永远不会被激活,导致相应的参数永远不能被更新;

三、激活函数选择篇

  1. 深度学习往往需要大量时间来处理大量数据,模型的收敛速度是尤为重要的。所以,总体上来讲,训练深度学习网络尽量使用zero-centered数据 (可以经过数据预处理实现) 和zero-centered输出。所以要尽量选择输出具有zero-centered特点的激活函数以加快模型的收敛速度;
  2. 如果使用 ReLU,那么一定要小心设置 learning rate,而且要注意不要让网络出现很多 “dead” 神经元,如果这个问题不好解决,那么可以试试 Leaky ReLU、PReLU 或者 Maxout;
  3. 最好不要用 sigmoid,你可以试试 tanh,不过可以预期它的效果会比不上 ReLU 和 Maxout.