-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathREADME.Rmd
67 lines (50 loc) · 2.32 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
output:
md_document:
variant: gfm
html_preview: false
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
<!-- First time: run usethis::use_readme_rmd() to create a pre-commit hook that
prevents from committing if the README.Rmd has changed, but has not been
re-knitted to generate an updated README.md -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
```{r echo=FALSE, results="hide", message=FALSE}
require(badger)
```
## EPISPOT – Annotation-driven approach for large-scale joint regression with multiple responses <img src="man/figures/epispot_logo.png" align="right" height="150"/>
<!-- Run for the R CMD checks, run usethis::use_github_actions() to set up the pipeline, possibly modify the .yaml file and then: -->
<!-- `r badge_travis("hruffieux/epispot")` -->
<!-- `r badge_github_actions("hruffieux/epispot")` -->
`r badge_license("GPL v3", url = "https://www.gnu.org/licenses/gpl-3.0")`
`r badge_devel("hruffieux/epispot", "blue")`
`r badge_code_size("hruffieux/epispot")`
`r badge_doi("10.1101/2020.09.21.305789", "yellow")`
## Overview
**epispot** is an R package for parallel variational expectation-maximisation in
sparse regression with hierarchically-related responses and predictor-level
information. A notable application is in the context of molecular quantitative
trait locus mapping, with several thousand molecular levels (responses), genetic
markers (candidate predictors) and epigenetic annotation marks (predictor-level
covariates) and individuals (samples).
H. Ruffieux, B. Fairfax, I. Nassiri, E. Vigorito, C. Wallace, S. Richardson, L. Bottolo. EPISPOT : An epigenome-driven approach for detecting and interpreting hotspots in molecular QTL studies, *The American Journal of Human Genetics*, 108:1-18, 10.1016/j.ajhg.2021.04.010, 2021.
## Installation
To install, run the following commands in R:
``` r
if(!require(remotes)) install.packages("remotes")
remotes::install_github("hruffieux/epispot")
```
## License and authors
This software uses the GPL v3 license, see [LICENSE](LICENSE).
Authors and copyright are provided in [DESCRIPTION](DESCRIPTION).
## Issues
To report an issue, please use the
[epispot issue tracker](https://github.com/hruffieux/epispot/issues) at
github.com.