-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathplot_recall_voc07.m
99 lines (83 loc) · 3.68 KB
/
plot_recall_voc07.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
function plot_recall_voc07()
% Plot the recall of pascal test set ground truth for all methods.
%
% This function requires the proposals to already be saved to disk. It will
% compute a matching between ground truth and proposals (if the result is not
% yet found on disk) and then plot recall curves. The plots are saved to
% figures/.
testset = load('data/pascal_voc07_test_annotations.mat');
methods = get_method_configs();
methods([14 16 19:25]) = [];
compute_best_candidates(testset, methods);
plot_legend(methods);
printpdf('figures/recall_legend.pdf');
fh = figure;
plot_overlap_recall_curve({methods.best_voc07_candidates_file}, methods, 100, fh, true, 'none');
hei = 10;
wid = 10;
set(gcf, 'Units','centimeters', 'Position',[0 0 wid hei]);
set(gcf, 'PaperPositionMode','auto');
printpdf('figures/recall_100.pdf')
fh = figure;
plot_overlap_recall_curve({methods.best_voc07_candidates_file}, methods, 1000, fh, false, 'none');
hei = 10;
wid = 10;
set(gcf, 'Units','centimeters', 'Position',[0 0 wid hei]);
set(gcf, 'PaperPositionMode','auto');
printpdf('figures/recall_1000.pdf')
fh = figure;
plot_overlap_recall_curve({methods.best_voc07_candidates_file}, methods, 10000, fh, false, 'none');
hei = 10;
wid = 10;
set(gcf, 'Units','centimeters', 'Position',[0 0 wid hei]);
set(gcf, 'PaperPositionMode','auto');
printpdf('figures/recall_10000.pdf')
plot_num_candidates_auc({methods.best_voc07_candidates_file}, methods);
end
function compute_best_candidates(testset, methods)
num_annotations = numel(testset.pos);
candidates_thresholds = round(10 .^ (0:0.5:4));
num_candidates_thresholds = numel(candidates_thresholds);
for method_idx = 1:numel(methods)
method = methods(method_idx);
try
load(method.best_voc07_candidates_file, 'best_candidates');
continue
catch
end
% preallocate
best_candidates = [];
best_candidates(num_candidates_thresholds).candidates_threshold = [];
best_candidates(num_candidates_thresholds).best_candidates = [];
for i = 1:num_candidates_thresholds
best_candidates(i).candidates_threshold = candidates_thresholds(i);
best_candidates(i).best_candidates.candidates = zeros(num_annotations, 4);
best_candidates(i).best_candidates.iou = zeros(num_annotations, 1);
best_candidates(i).image_statistics(numel(testset.impos)).num_candidates = 0;
end
pos_range_start = 1;
for j = 1:numel(testset.impos)
tic_toc_print('evalutating %s: %d/%d\n', method.name, j, numel(testset.impos));
pos_range_end = pos_range_start + size(testset.impos(j).boxes, 1) - 1;
assert(pos_range_end <= num_annotations);
tic_toc_print('sampling candidates for image %d/%d\n', j, numel(testset.impos));
[~,img_id,~] = fileparts(testset.impos(j).im);
for i = 1:num_candidates_thresholds
[candidates, scores] = get_candidates(method, img_id, ...
candidates_thresholds(i));
if isempty(candidates)
impos_best_ious = zeros(size(testset.impos(j).boxes, 1), 1);
impos_best_boxes = zeros(size(testset.impos(j).boxes, 1), 4);
else
[impos_best_ious, impos_best_boxes] = closest_candidates(...
testset.impos(j).boxes, candidates);
end
best_candidates(i).best_candidates.candidates(pos_range_start:pos_range_end,:) = impos_best_boxes;
best_candidates(i).best_candidates.iou(pos_range_start:pos_range_end) = impos_best_ious;
best_candidates(i).image_statistics(j).num_candidates = size(candidates, 1);
end
pos_range_start = pos_range_end + 1;
end
save(method.best_voc07_candidates_file, 'best_candidates');
end
end