-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathanomaly_detection_ocsvm.py
184 lines (139 loc) · 6.16 KB
/
anomaly_detection_ocsvm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import argparse
from collections import namedtuple
import sys
import numpy as np
from sklearn import svm
from sklearn.metrics import precision_recall_curve, auc, roc_auc_score
def parse_args():
parser = argparse.ArgumentParser(description='Anomaly Detection by One Class SVM')
parser.add_argument('--data_path', default='./data/cifar10_cae.npz', type=str, help='path to dataset')
parser.add_argument('--normal_label', default=8, type=int,
help='label defined as normal. Other classes are treated as abnormal')
parser.add_argument('--rate_normal_train', default=0.82, type=float, help='rate of normal data to use in training')
parser.add_argument('--rate_anomaly_test', default=0.1, type=float,
help='rate of abnormal data versus normal data in test data. The default setting is 10:1(=0.1)')
parser.add_argument('--test_rep_count', default=10, type=int,
help='counts of test repeats per one trained model. For a model, test data selection and evaluation are repeated.')
parser.add_argument('--TRAIN_RAND_SEED', default=42, type=int, help='random seed used selecting training data')
parser.add_argument('--TEST_RAND_SEED', default=[42, 89, 2, 156, 491, 32, 67, 341, 100, 279], type=list,
help='random seed used selecting test data.'
'The number of elements should equal to "test_rep_count" for reproductivity of validation.'
'When the length of this list is less than "test_rep_count", seed is randomly generated')
args = parser.parse_args()
return args
def load_data(data_to_path):
"""load data
data should be compressed in npz
"""
data = np.load(data_to_path)
try:
full_images = data['ae_out']
full_labels = data['labels']
except:
print('Loading data should be numpy array and has "ae_out" and "labels" keys.')
sys.exit(1)
return full_images, full_labels
def prepare_data(full_images, full_labels, normal_label, rate_normal_train, TRIN_RAND_SEED):
"""prepare data
split data into anomaly data and normal data
"""
TRAIN_DATA_RNG = np.random.RandomState(TRIN_RAND_SEED)
# data whose label corresponds to anomaly label, otherwise treated as normal data
ano_x = full_images[full_labels != normal_label]
ano_y = full_labels[full_labels != normal_label]
normal_x = full_images[full_labels == normal_label]
normal_y = full_labels[full_labels == normal_label]
# replace label : anomaly -> 1 : normal -> 0
ano_y[:] = 1
normal_y[:] = 0
# shuffle normal data and label
inds = TRAIN_DATA_RNG.permutation(normal_x.shape[0])
normal_x_data = normal_x[inds]
normal_y_data = normal_y[inds]
# split normal data into train and test
index = int(normal_x.shape[0] * rate_normal_train)
trainx = normal_x_data[:index]
testx_n = normal_x_data[index:]
testy_n = normal_y_data[index:]
split_data = namedtuple('split_data', ('train_x', 'testx_n', 'testy_n', 'ano_x', 'ano_y'))
return split_data(
train_x=trainx,
testx_n=testx_n,
testy_n=testy_n,
ano_x=ano_x,
ano_y=ano_y
)
def make_test_data(split_data, RNG, rate_anomaly_test):
"""make test data which has specified mixed rate(rate_anomaly_test).
shuffle and concatenate normal and abnormal data"""
ano_x = split_data.ano_x
ano_y = split_data.ano_y
testx_n = split_data.testx_n
testy_n = split_data.testy_n
# anomaly data in test
inds_1 = RNG.permutation(ano_x.shape[0])
ano_x = ano_x[inds_1]
ano_y = ano_y[inds_1]
index_1 = int(testx_n.shape[0] * rate_anomaly_test)
testx_a = ano_x[:index_1]
testy_a = ano_y[:index_1]
# concatenate test normal data and test anomaly data
testx = np.concatenate([testx_a, testx_n], axis=0)
testy = np.concatenate([testy_a, testy_n], axis=0)
return testx, testy
def calc_metrics(testy, scores):
precision, recall, _ = precision_recall_curve(testy, scores)
roc_auc = roc_auc_score(testy, scores)
prc_auc = auc(recall, precision)
return roc_auc, prc_auc
def main():
# set parameters
args = parse_args()
data_path = args.data_path
normal_label = args.normal_label
rate_normal_train = args.rate_normal_train
rate_anomaly_test = args.rate_anomaly_test
test_rep_count = args.test_rep_count
TRAIN_RAND_SEED = args.TRAIN_RAND_SEED
TEST_RAND_SEED = args.TEST_RAND_SEED
# load and prepare data
full_images, full_labels = load_data(data_path)
split_data = prepare_data(full_images, full_labels, normal_label, rate_normal_train, TRAIN_RAND_SEED)
pr_scores = []
roc_scores = []
# nu : the upper limit ratio of anomaly data(0<=nu<=1)
nus = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
# train model and evaluate with changing parameter nu
for nu in nus:
# train with nu
clf = svm.OneClassSVM(nu=nu, kernel='rbf', gamma='auto')
clf.fit(split_data.train_x)
total_pr = 0
total_roc = 0
# repeat test by randomly selected data and evaluate
for j in range(test_rep_count):
# select test data and test
if j < len(TEST_RAND_SEED):
TEST_SEED = np.random.RandomState(TEST_RAND_SEED[j])
else:
TEST_SEED = np.random.RandomState(np.random.randint(0, 10000))
testx, testy = make_test_data(split_data, TEST_SEED, rate_anomaly_test)
scores = clf.decision_function(testx).ravel() * (-1)
# calculate evaluation metrics
roc_auc, prc_auc = calc_metrics(testy, scores)
total_pr += prc_auc
total_roc += roc_auc
# calculate average
total_pr /= test_rep_count
total_roc /= test_rep_count
pr_scores.append(total_pr)
roc_scores.append(total_roc)
print('--- nu : ', nu, ' ---')
print('PR AUC : ', total_pr)
print('ROC_AUC : ', total_roc)
print('***' * 5)
print('PR_AUC MAX : ', max(pr_scores))
print('ROC_AUC MAX : ', max(roc_scores))
print('ROC_MAX_NU : ', nus[int(np.argmax(roc_scores))])
if __name__ == '__main__':
main()