forked from junxiaosong/AlphaZero_Gomoku
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolicy_value_net_pytorch.py
159 lines (141 loc) · 6.13 KB
/
policy_value_net_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# -*- coding: utf-8 -*-
"""
An implementation of the policyValueNet in PyTorch
Tested in PyTorch 0.2.0 and 0.3.0
@author: Junxiao Song
"""
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
def set_learning_rate(optimizer, lr):
"""Sets the learning rate to the given value"""
for param_group in optimizer.param_groups:
param_group['lr'] = lr
class Net(nn.Module):
"""policy-value network module"""
def __init__(self, board_width, board_height):
super(Net, self).__init__()
self.board_width = board_width
self.board_height = board_height
# common layers
self.conv1 = nn.Conv2d(4, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
# action policy layers
self.act_conv1 = nn.Conv2d(128, 4, kernel_size=1)
self.act_fc1 = nn.Linear(4*board_width*board_height,
board_width*board_height)
# state value layers
self.val_conv1 = nn.Conv2d(128, 2, kernel_size=1)
self.val_fc1 = nn.Linear(2*board_width*board_height, 64)
self.val_fc2 = nn.Linear(64, 1)
def forward(self, state_input):
# common layers
x = F.relu(self.conv1(state_input))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
# action policy layers
x_act = F.relu(self.act_conv1(x))
x_act = x_act.view(-1, 4*self.board_width*self.board_height)
x_act = F.log_softmax(self.act_fc1(x_act))
# state value layers
x_val = F.relu(self.val_conv1(x))
x_val = x_val.view(-1, 2*self.board_width*self.board_height)
x_val = F.relu(self.val_fc1(x_val))
x_val = F.tanh(self.val_fc2(x_val))
return x_act, x_val
class PolicyValueNet():
"""policy-value network """
def __init__(self, board_width, board_height,
model_file=None, use_gpu=False):
self.use_gpu = use_gpu
self.board_width = board_width
self.board_height = board_height
self.l2_const = 1e-4 # coef of l2 penalty
# the policy value net module
if self.use_gpu:
self.policy_value_net = Net(board_width, board_height).cuda()
else:
self.policy_value_net = Net(board_width, board_height)
self.optimizer = optim.Adam(self.policy_value_net.parameters(),
weight_decay=self.l2_const)
if model_file:
net_params = torch.load(model_file)
self.policy_value_net.load_state_dict(net_params)
def policy_value(self, state_batch):
"""
input: a batch of states
output: a batch of action probabilities and state values
"""
if self.use_gpu:
state_batch = Variable(torch.FloatTensor(state_batch).cuda())
log_act_probs, value = self.policy_value_net(state_batch)
act_probs = np.exp(log_act_probs.data.cpu().numpy())
return act_probs, value.data.cpu().numpy()
else:
state_batch = Variable(torch.FloatTensor(state_batch))
log_act_probs, value = self.policy_value_net(state_batch)
act_probs = np.exp(log_act_probs.data.numpy())
return act_probs, value.data.numpy()
def policy_value_fn(self, board):
"""
input: board
output: a list of (action, probability) tuples for each available
action and the score of the board state
"""
legal_positions = board.availables
current_state = np.ascontiguousarray(board.current_state().reshape(
-1, 4, self.board_width, self.board_height))
if self.use_gpu:
log_act_probs, value = self.policy_value_net(
Variable(torch.from_numpy(current_state)).cuda().float())
act_probs = np.exp(log_act_probs.data.cpu().numpy().flatten())
else:
log_act_probs, value = self.policy_value_net(
Variable(torch.from_numpy(current_state)).float())
act_probs = np.exp(log_act_probs.data.numpy().flatten())
act_probs = zip(legal_positions, act_probs[legal_positions])
value = value.data[0][0]
return act_probs, value
def train_step(self, state_batch, mcts_probs, winner_batch, lr):
"""perform a training step"""
# wrap in Variable
if self.use_gpu:
state_batch = Variable(torch.FloatTensor(state_batch).cuda())
mcts_probs = Variable(torch.FloatTensor(mcts_probs).cuda())
winner_batch = Variable(torch.FloatTensor(winner_batch).cuda())
else:
state_batch = Variable(torch.FloatTensor(state_batch))
mcts_probs = Variable(torch.FloatTensor(mcts_probs))
winner_batch = Variable(torch.FloatTensor(winner_batch))
# zero the parameter gradients
self.optimizer.zero_grad()
# set learning rate
set_learning_rate(self.optimizer, lr)
# forward
log_act_probs, value = self.policy_value_net(state_batch)
# define the loss = (z - v)^2 - pi^T * log(p) + c||theta||^2
# Note: the L2 penalty is incorporated in optimizer
value_loss = F.mse_loss(value.view(-1), winner_batch)
policy_loss = -torch.mean(torch.sum(mcts_probs*log_act_probs, 1))
loss = value_loss + policy_loss
# backward and optimize
loss.backward()
self.optimizer.step()
# calc policy entropy, for monitoring only
entropy = -torch.mean(
torch.sum(torch.exp(log_act_probs) * log_act_probs, 1)
)
return loss.data[0], entropy.data[0]
#for pytorch version >= 0.5 please use the following line instead.
#return loss.item(), entropy.item()
def get_policy_param(self):
net_params = self.policy_value_net.state_dict()
return net_params
def save_model(self, model_file):
""" save model params to file """
net_params = self.get_policy_param() # get model params
torch.save(net_params, model_file)