-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcontroller.py
349 lines (329 loc) · 16.6 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import numpy as np
import joblib
import time
from tensorboardX import SummaryWriter
class Controller:
"""Generate trajectories, call to train, etc."""
def __init__(self, env, imagination, replay_buffer, planner, expt_name, init_rand_trajs=1000,
filter_rand_trajs=False, extra_trajs=1000,
traj_len=50, min_traj_len=20, exploration_noise=0.1, train_OSM=True, gan_batch_size=64,
osm_batch_size=256, init_train_gan=100000, init_train_OSM=100000, gan_train_per_extra=250,
osm_train_per_extra=250, gan_sampling_noise=[0.0001,0.0001,0.0001],
osm_sampling_noise=[0.0001,0.0001,0.0001], big_trains=[], print_every=20, eval_every=25000, eval_trajs=200):
self.expt_name = expt_name
self.path_name = "experiments/"+expt_name
self.env = env
self.planner = planner
self.imagination = imagination
self.replay_buffer = replay_buffer
self.init_rand_trajs = init_rand_trajs
self.filter_rand_trajs = filter_rand_trajs
self.extra_trajs = extra_trajs
self.traj_len = traj_len
self.min_traj_len = min_traj_len
self.exploration_noise = exploration_noise
self.train_OSM = train_OSM
self.gan_batch_size = gan_batch_size
self.osm_batch_size = osm_batch_size
self.init_train_gan = init_train_gan
self.init_train_OSM = init_train_OSM
self.gan_train_per_extra = gan_train_per_extra
self.osm_train_per_extra = osm_train_per_extra
self.gan_sampling_noise = gan_sampling_noise
self.osm_sampling_noise = osm_sampling_noise
self.big_trains = big_trains
self.print_every = print_every
self.eval_every = eval_every
self.full_eval_data = []
self.eval_trajs = eval_trajs
self.eval_num = 0
self.prev_eval_at = 0
self.train_steps_gan = 0
self.train_steps_model = 0
self.num_env_transitions = 0
self.writer = SummaryWriter(self.path_name+"/logs")
def main_loop(self, init=True, extra_trajs=False):
if init:
t1 = time.time()
c = 0
wasted_trajs = 0
while c < self.init_rand_trajs:
added, _ = self.generate_trajectory(eval=False, random=True, verbose=True)
self.num_env_transitions += self.traj_len
if added:
c += 1
else:
wasted_trajs += 1
t2 = time.time()
t_rand_traj = t2-t1
#fit scalers on random data.
size = self.replay_buffer.curr_size
states, _, next_states, _ = self.replay_buffer.sample_for_model_training(size)
goals = self.replay_buffer._achieved_goals[:size, :]
states_m = states + self.osm_sampling_noise[0]*np.random.randn(size, self.env.state_dim)
next_states_m = next_states + self.osm_sampling_noise[1]*np.random.randn(size, self.env.state_dim)
state_diffs = next_states_m - states_m
if self.env.name.startswith("four_rooms"):
#manually fit these
rand_x = np.random.uniform(self.env.x_range[0], self.env.x_range[1], states_m.shape[0])
rand_y = np.random.uniform(self.env.y_range[0], self.env.y_range[1], states_m.shape[0])
states_m[:, 0] = rand_x
states_m[:, 1] = rand_y
goals[:, 0] = rand_x
goals[:, 1] = rand_y
self.imagination.one_step_model.fit_scalers(states_m, state_diffs, env=self.env)
self.imagination.fit_scalers(goals)
#train on random data
t1 = time.time()
for i in range(max(self.init_train_OSM, self.init_train_gan)):
if i % self.print_every == 0:
verbose = True
else:
verbose = False
if self.train_steps_model < self.init_train_OSM:
self.train_model(self.osm_batch_size, verbose=verbose)
if self.train_steps_gan < self.init_train_gan:
self.train_gan(self.gan_batch_size, verbose=verbose)
t2 = time.time()
t_train_rand = t2-t1
print("Time taken to generate trajs: %f seconds" % t_rand_traj)
print("Time taken to train on random trajs: %f seconds" % t_train_rand)
self.save(buffer=True, name="after_rand")
self.curr_env_transitions = self.num_env_transitions
#self.full_eval()
if extra_trajs:
if len(self.big_trains)==0:
big_trains_at = []
big_train_ind = np.inf
else:
big_trains_at = (self.big_trains*self.traj_len + self.num_env_transitions).astype(int)
big_train_ind = 0
total_env_transitions = int(self.num_env_transitions + self.traj_len*self.extra_trajs)
self.curr_env_transitions = self.num_env_transitions
fail_adds = 0
while self.curr_env_transitions < total_env_transitions:
random = False
if fail_adds > 2:
random = True
added, traj_len = self.generate_trajectory(eval=False, random=random, verbose=True)
if added == False:
fail_adds += 1
wasted_trajs += 1
self.num_env_transitions += traj_len
continue
else:
fail_adds = 0
self.num_env_transitions += traj_len
self.curr_env_transitions += traj_len
big_train = False
if big_train_ind < len(big_trains_at):
if self.curr_env_transitions > big_trains_at[big_train_ind]:
big_train_ind += 1
big_train = True
for i in range(max(self.init_train_gan, self.init_train_OSM)):
if i % self.print_every == 0:
verbose = True
else:
verbose = False
if i < self.init_train_gan:
self.train_gan(self.gan_batch_size, verbose=verbose)
if i < self.init_train_OSM:
self.train_model(self.osm_batch_size, verbose=verbose)
if big_train == False:
num_train_gan = int(self.gan_train_per_extra * (traj_len / self.traj_len))
num_train_osm = int(self.osm_train_per_extra * (traj_len / self.traj_len))
for i in range(max(num_train_gan, num_train_osm)):
if i % self.print_every == 0:
verbose = True
else:
verbose = False
if i < num_train_gan:
self.train_gan(self.gan_batch_size, verbose=verbose)
if i < num_train_osm:
self.train_model(self.osm_batch_size, verbose=verbose)
if (self.curr_env_transitions - self.prev_eval_at) > self.eval_every:
self.full_eval()
self.save_full_eval()
self.save(buffer=False, name=str(self.eval_num))
self.save(buffer=False, name="final")
self.full_eval()
self.save_full_eval()
print("Number of wasted trajectories: %d" % wasted_trajs)
def generate_trajectory(self, eval=False, random=True, render=False, verbose=False, return_path=False):
"""..."""
for i in range(len(self.imagination.G_nets)):
self.imagination.G_nets[i].eval()
for i in range(len(self.imagination.one_step_model.networks)):
self.imagination.one_step_model.networks[i].eval()
path = {}
obs = self.env.reset()
self.planner.reset()
curr_state = obs["observation"]
curr_achieved_goal = obs["achieved_goal"]
first_achieved_goal = obs["achieved_goal"]
end_goal = obs["desired_goal"]
path["observations"] = np.zeros((self.traj_len, len(curr_state)))
path["next_observations"] = np.zeros((self.traj_len, len(curr_state)))
path["achieved_goals"] = np.zeros((self.traj_len, len(curr_achieved_goal)))
path["actions"] = np.zeros((self.traj_len, self.imagination.ac_dim))
if return_path:
path["start_state"] = self.env.save_state()
path["end_goal"] = end_goal.copy()
curr_step = 0
planner_successes = 0
goal_achieved = False
if render:
self.env.render()
while curr_step < self.traj_len:
if random or (goal_achieved and eval==False):
action = self.env.action_space.sample()
else:
action, planner_success = self.planner.generate_next_action(curr_state, end_goal, self.imagination,
self.env, **self.planner.planning_args)
if eval == False:
action += self.exploration_noise*np.random.randn(self.env.ac_dim)
action = np.clip(action, -1.0, 1.0)
planner_successes += planner_success
obs, _, _, _ = self.env.step(action)
if render:
self.env.render()
next_state = obs["observation"]
path["observations"][curr_step, :] = curr_state
path["next_observations"][curr_step, :] = next_state
path["actions"][curr_step, :] = action
path["achieved_goals"][curr_step, :] = curr_achieved_goal
curr_state = next_state
curr_achieved_goal = obs["achieved_goal"]
curr_step += 1
if self.env.name.startswith("fetch_slide"):
if curr_step == self.traj_len:
if eval:
if self.env._is_success(curr_achieved_goal, end_goal):
if verbose:
print("Goal achieved at end of trajectory!")
return True, curr_step
else:
if verbose:
print("Failed to achieve goal!")
return False, _
else:
if self.env._is_success(curr_achieved_goal, end_goal):
if eval:
if verbose:
print("Goal achieved within %d steps!" % curr_step)
if return_path:
path["observations"] = path["observations"][:curr_step, :]
path["next_observations"] = path["next_observations"][:curr_step, :]
path["actions"] = path["actions"][:curr_step, :]
path["achieved_goals"] = path["achieved_goals"][:curr_step, :]
return True, curr_step, path
else:
return True, curr_step
else:
goal_achieved = True
if goal_achieved and curr_step >= self.min_traj_len and random == False:
break
path["observations"] = path["observations"][:curr_step, :]
path["next_observations"] = path["next_observations"][:curr_step, :]
path["actions"] = path["actions"][:curr_step, :]
path["achieved_goals"] = path["achieved_goals"][:curr_step, :]
if eval:
if verbose:
print("Failed to achieve goal!")
if return_path:
return False, _, path
else:
return False, _
added = False
if self.filter_rand_trajs == False:
self.replay_buffer.add_path(path)
added = True
else:
final_achieved_goal = obs["achieved_goal"]
if np.linalg.norm(first_achieved_goal - final_achieved_goal) > 0.05:
if self.env.name.startswith("fetch_pick_and_place"):
if first_achieved_goal[2] - final_achieved_goal[2] > 0.1:
added = False #block has fallen off
else:
self.replay_buffer.add_path(path)
added = True
else:
self.replay_buffer.add_path(path)
added = True
if verbose and added:
print("Trajectory of length %d generated. Random: %r. Buffer size: %d" % (
path["observations"].shape[0], random, self.replay_buffer.curr_size
))
if return_path:
return added, curr_step, path
else:
return added, curr_step
def train_model(self, batch_size, verbose=False):
if self.train_OSM == False:
return
m_losses = []; m_reg_losses = []
for i in range(len(self.imagination.one_step_model.networks)):
observations, actions, next_observations, tree_indices = \
self.replay_buffer.sample_for_model_training(batch_size, noise=self.osm_sampling_noise)
m_loss, m_reg_loss = self.imagination.one_step_model.train_on_batch(observations, actions, next_observations, osm_ind=i)
m_losses.append(m_loss)
m_reg_losses.append(m_reg_loss)
self.writer.add_scalar('loss_model_error_'+str(i), m_loss, self.train_steps_model)
self.writer.add_scalar('loss_model_reg_'+str(i), m_reg_loss, self.train_steps_model)
self.train_steps_model += 1
if verbose:
str_to_print = "Model training step %d."%self.train_steps_model
for i in range(len(self.imagination.one_step_model.networks)):
str_to_print += " MSE loss %d: %f. reg loss: %f." % (i, m_losses[i], m_reg_losses[i])
str_to_print += " Mean MSE: %f" % np.mean(m_losses)
print(str_to_print)
def train_gan(self, batch_size, verbose=False):
self.train_steps_gan += 1
for i in range(len(self.imagination.G_nets)):
self.imagination.G_nets[i].train()
self.imagination.D_nets[i].train()
observations, actions, goals = self.replay_buffer.sample_for_gan_training(batch_size, noise=self.gan_sampling_noise)
losses = self.imagination.train_on_trajs(observations, goals, actions, object=self.env.object, gan_ind=i)
str_to_print = "GAN_%d training step %d. " % (i, self.train_steps_gan)
for k, v in losses.items():
self.writer.add_scalar(k+"_"+str(i), v, self.train_steps_gan)
str_to_print += "[%s: %f] " % (k, v)
if verbose:
print(str_to_print)
def save_full_eval(self):
file_name = self.path_name + "/eval.pkl"
joblib.dump(self.full_eval_data, file_name)
def save(self, buffer=False, name=None):
file_name = self.path_name + "/parameters"
if name is not None:
file_name += "_"+name
file_name += ".pkl"
params = self.imagination.save(one_step_also=True)
joblib.dump(params, file_name)
if buffer:
joblib.dump(self.replay_buffer, self.path_name+"/replay_buffer.pkl")
def load(self, buffer=False, name=None):
file_name = self.path_name + "/parameters"
if name is not None:
file_name += "_" + name
file_name += ".pkl"
gan_params, osm_params = joblib.load(file_name)
self.imagination.load(gan_params[0], gan_params[1], gan_params[2], osm_params)
if buffer:
self.replay_buffer = joblib.load(self.path_name +"/replay_buffer.pkl")
def full_eval(self):
orig_traj_len = self.traj_len
if self.env.name.startswith("fetch") or self.env.name.startswith("four_rooms") or self.env.name.startswith("reacher"):
self.traj_len = 50
eval_data = {"num_env_transitions": self.num_env_transitions, "training_steps": [self.train_steps_gan, self.train_steps_model],
"n": self.eval_num, "buffer_size": self.replay_buffer.curr_size, "num_successes": 0, "num_steps": []}
self.prev_eval_at = self.curr_env_transitions
for i in range(self.eval_trajs):
success, num_steps = self.generate_trajectory(eval=True, random=False, verbose=False)
if success:
eval_data["num_successes"] += 1
eval_data["num_steps"].append(num_steps)
eval_data["frac_success"] = eval_data["num_successes"] / self.eval_trajs
self.full_eval_data.append(eval_data)
self.eval_num += 1
self.traj_len = orig_traj_len