-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgaussian.cpp
377 lines (323 loc) · 15.6 KB
/
gaussian.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
/*
* Gaussian Mixture Model Clustering wtih CUDA
*
* Author: Andrew Pangborn
*
* Department of Computer Engineering
* Rochester Institute of Technology
*
*/
// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <time.h> // for clock(), clock_t, CLOCKS_PER_SEC
// includes, project
#include "gaussian.h"
#include "invert_matrix.h"
#include "gaussian_kernel.h"
// Function prototypes
extern "C" float* readData(char* f, int* ndims, int*nevents);
int validateArguments(int argc, char** argv, int* num_clusters);
void writeCluster(FILE* f, clusters_t clusters, int c, int num_dimensions);
void printCluster(clusters_t clusters, int c, int num_dimensions);
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int
main( int argc, char** argv) {
int num_clusters;
// For profiling
clock_t seed_start, seed_end, seed_total = 0;
clock_t regroup_start, regroup_end, regroup_total = 0;
int regroup_iterations = 0;
clock_t params_start, params_end, params_total = 0;
int params_iterations = 0;
clock_t constants_start, constants_end, constants_total = 0;
int constants_iterations = 0;
clock_t total_timer = clock();
double total_time = 0;
clock_t io_timer;
double io_time = 0;
clock_t cpu_timer;
double cpu_time = 0;
io_timer = clock();
// Validate the command-line arguments, parse # of clusters, etc
if(validateArguments(argc,argv,&num_clusters)) {
return 1; //Bard args
}
int num_dimensions;
int num_events;
// Read FCS data
PRINT("Parsing input file...");
// This stores the data in a 1-D array with consecutive values being the dimensions from a single event
// (num_events by num_dimensions matrix)
float* fcs_data_by_event = readData(argv[2],&num_dimensions,&num_events);
if(!fcs_data_by_event) {
printf("Error parsing input file. This could be due to an empty file ");
printf("or an inconsistent number of dimensions. Aborting.\n");
return 1;
}
// Transpose the event data (allows coalesced access pattern in E-step kernel)
// This has consecutive values being from the same dimension of the data
// (num_dimensions by num_events matrix)
float* fcs_data_by_dimension = (float*) malloc(sizeof(float)*num_events*num_dimensions);
for(int e=0; e<num_events; e++) {
for(int d=0; d<num_dimensions; d++) {
fcs_data_by_dimension[d*num_events+e] = fcs_data_by_event[e*num_dimensions+d];
}
}
io_time += (double)(clock() - io_timer);
PRINT("Number of events: %d\n",num_events);
PRINT("Number of dimensions: %d\n",num_dimensions);
PRINT("Number of target clusters: %d\n\n",num_clusters);
cpu_timer = clock();
// Setup the cluster data structures on host
clusters_t clusters;
clusters.N = (float*) malloc(sizeof(float)*num_clusters);
clusters.pi = (float*) malloc(sizeof(float)*num_clusters);
clusters.constant = (float*) malloc(sizeof(float)*num_clusters);
clusters.avgvar = (float*) malloc(sizeof(float)*num_clusters);
clusters.means = (float*) malloc(sizeof(float)*num_dimensions*num_clusters);
clusters.R = (float*) malloc(sizeof(float)*num_dimensions*num_dimensions*num_clusters);
clusters.Rinv = (float*) malloc(sizeof(float)*num_dimensions*num_dimensions*num_clusters);
clusters.memberships = (float*) malloc(sizeof(float)*num_events*num_clusters);
if(!clusters.means || !clusters.R || !clusters.Rinv || !clusters.memberships) {
printf("ERROR: Could not allocate memory for clusters.\n");
return 1;
}
DEBUG("Finished allocating memory on host for clusters.\n");
float rissanen;
//////////////// Initialization done, starting kernels ////////////////
DEBUG("Invoking seed_clusters kernel.\n");
fflush(stdout);
// seed_clusters sets initial pi values,
// finds the means / covariances and copies it to all the clusters
// TODO: Does it make any sense to use multiple blocks for this?
seed_start = clock();
seed_clusters(fcs_data_by_event, &clusters, num_dimensions, num_clusters, num_events);
DEBUG("Invoking constants kernel.\n");
// Computes the R matrix inverses, and the gaussian constant
//constants_kernel<<<num_clusters, num_threads>>>(d_clusters,num_clusters,num_dimensions);
constants(&clusters,num_clusters,num_dimensions);
constants_iterations++;
seed_end = clock();
seed_total = seed_end - seed_start;
// Calculate an epsilon value
//int ndata_points = num_events*num_dimensions;
float epsilon = (1+num_dimensions+0.5*(num_dimensions+1)*num_dimensions)*log((float)num_events*num_dimensions)*0.01;
float likelihood, old_likelihood;
int iters;
epsilon = 1e-6;
PRINT("Gaussian.cu: epsilon = %f\n",epsilon);
/*************** EM ALGORITHM *****************************/
// do initial regrouping
// Regrouping means calculate a cluster membership probability
// for each event and each cluster. Each event is independent,
// so the events are distributed to different blocks
// (and hence different multiprocessors)
DEBUG("Invoking regroup (E-step) kernel with %d blocks.\n",NUM_BLOCKS);
regroup_start = clock();
estep1(fcs_data_by_dimension,&clusters,num_dimensions,num_clusters,num_events,&likelihood);
estep2(fcs_data_by_dimension,&clusters,num_dimensions,num_clusters,num_events,&likelihood);
//estep2b(fcs_data_by_dimension,&clusters,num_dimensions,num_clusters,num_events,&likelihood);
regroup_end = clock();
regroup_total += regroup_end - regroup_start;
regroup_iterations++;
DEBUG("Regroup Kernel Iteration Time: %f\n\n",((double)(regroup_end-regroup_start))/CLOCKS_PER_SEC);
DEBUG("Likelihood: %e\n",likelihood);
float change = epsilon*2;
PRINT("Performing EM algorithm on %d clusters.\n",num_clusters);
iters = 0;
// This is the iterative loop for the EM algorithm.
// It re-estimates parameters, re-computes constants, and then regroups the events
// These steps keep repeating until the change in likelihood is less than some epsilon
while(iters < MIN_ITERS || (fabs(change) > epsilon && iters < MAX_ITERS)) {
old_likelihood = likelihood;
DEBUG("Invoking reestimate_parameters (M-step) kernel.\n");
params_start = clock();
// This kernel computes a new N, pi isn't updated until compute_constants though
mstep_n(fcs_data_by_dimension,&clusters,num_dimensions,num_clusters,num_events);
mstep_mean(fcs_data_by_dimension,&clusters,num_dimensions,num_clusters,num_events);
mstep_covar(fcs_data_by_dimension,&clusters,num_dimensions,num_clusters,num_events);
params_end = clock();
params_total += params_end - params_start;
params_iterations++;
DEBUG("Model M-Step Iteration Time: %f\n\n",((double)(params_end-params_start))/CLOCKS_PER_SEC);
//return 0; // RETURN FOR FASTER PROFILING
DEBUG("Invoking constants kernel.\n");
// Inverts the R matrices, computes the constant, normalizes cluster probabilities
constants_start = clock();
constants(&clusters,num_clusters,num_dimensions);
constants_end = clock();
constants_total += constants_end - constants_start;
constants_iterations++;
DEBUG("Constants Kernel Iteration Time: %f\n\n",((double)(constants_end-constants_start))/CLOCKS_PER_SEC);
DEBUG("Invoking regroup (E-step) kernel with %d blocks.\n",NUM_BLOCKS);
regroup_start = clock();
// Compute new cluster membership probabilities for all the events
estep1(fcs_data_by_dimension,&clusters,num_dimensions,num_clusters,num_events,&likelihood);
estep2(fcs_data_by_dimension,&clusters,num_dimensions,num_clusters,num_events,&likelihood);
//estep2b(fcs_data_by_dimension,&clusters,num_dimensions,num_clusters,num_events,&likelihood);
regroup_end = clock();
regroup_total += regroup_end - regroup_start;
regroup_iterations++;
DEBUG("E-step Iteration Time: %f\n\n",((double)(regroup_end-regroup_start))/CLOCKS_PER_SEC);
change = likelihood - old_likelihood;
DEBUG("likelihood = %f\n",likelihood);
DEBUG("Change in likelihood: %f\n",change);
iters++;
}
// Calculate Rissanen Score
rissanen = -likelihood + 0.5*(num_clusters*(1+num_dimensions+0.5*(num_dimensions+1)*num_dimensions)-1)*logf((float)num_events*num_dimensions);
PRINT("\nFinal rissanen Score was: %f, with %d clusters.\n",rissanen,num_clusters);
char* result_suffix = ".results";
char* summary_suffix = ".summary";
int filenamesize1 = strlen(argv[3]) + strlen(result_suffix) + 1;
int filenamesize2 = strlen(argv[3]) + strlen(summary_suffix) + 1;
char* result_filename = (char*) malloc(filenamesize1);
char* summary_filename = (char*) malloc(filenamesize2);
strcpy(result_filename,argv[3]);
strcpy(summary_filename,argv[3]);
strcat(result_filename,result_suffix);
strcat(summary_filename,summary_suffix);
PRINT("Summary filename: %s\n",summary_filename);
PRINT("Results filename: %s\n",result_filename);
cpu_time += (double)(clock() - cpu_timer);
io_timer = clock();
// Open up the output file for cluster summary
FILE* outf = fopen(summary_filename,"w");
if(!outf) {
printf("ERROR: Unable to open file '%s' for writing.\n",argv[3]);
}
// Print the clusters with the lowest rissanen score to the console and output file
for(int c=0; c<num_clusters; c++) {
//if(saved_clusters.N[c] == 0.0) {
// continue;
//}
if(ENABLE_PRINT) {
// Output the final cluster stats to the console
PRINT("Cluster #%d\n",c);
printCluster(clusters,c,num_dimensions);
PRINT("\n\n");
}
if(ENABLE_OUTPUT) {
// Output the final cluster stats to the output file
fprintf(outf,"Cluster #%d\n",c);
writeCluster(outf,clusters,c,num_dimensions);
fprintf(outf,"\n\n");
}
}
// Print profiling information
printf("Program Component\tTotal\tIters\tTime Per Iteration\n");
printf(" Seed Kernel:\t%7.4f\t%d\t%7.4f\n",seed_total/(double)CLOCKS_PER_SEC,1, (double) seed_total / (double) CLOCKS_PER_SEC);
printf(" E-step Kernel:\t%7.4f\t%d\t%7.4f\n",regroup_total/(double)CLOCKS_PER_SEC,regroup_iterations, (double) regroup_total / (double) CLOCKS_PER_SEC / (double) regroup_iterations);
printf(" M-step Kernel:\t%7.4f\t%d\t%7.4f\n",params_total/(double)CLOCKS_PER_SEC,params_iterations, (double) params_total / (double) CLOCKS_PER_SEC / (double) params_iterations);
printf(" Constants Kernel:\t%7.4f\t%d\t%7.4f\n",constants_total/(double)CLOCKS_PER_SEC,constants_iterations, (double) constants_total / (double) CLOCKS_PER_SEC / (double) constants_iterations);
// Write profiling info to summary file
fprintf(outf,"Program Component\tTotal\tIters\tTime Per Iteration\n");
fprintf(outf," Seed Kernel:\t%7.4f\t%d\t%7.4f\n",seed_total/(double)CLOCKS_PER_SEC,1, (double) seed_total / (double) CLOCKS_PER_SEC);
fprintf(outf," E-step Kernel:\t%7.4f\t%d\t%7.4f\n",regroup_total/(double)CLOCKS_PER_SEC,regroup_iterations, (double) regroup_total / (double) CLOCKS_PER_SEC / (double) regroup_iterations);
fprintf(outf," M-step Kernel:\t%7.4f\t%d\t%7.4f\n",params_total/(double)CLOCKS_PER_SEC,params_iterations, (double) params_total / (double) CLOCKS_PER_SEC / (double) params_iterations);
fprintf(outf," Constants Kernel:\t%7.4f\t%d\t%7.4f\n",constants_total/(double)CLOCKS_PER_SEC,constants_iterations, (double) constants_total / (double) CLOCKS_PER_SEC / (double) constants_iterations);
fclose(outf);
// Open another output file for the event level clustering results
FILE* fresults = fopen(result_filename,"w");
if(ENABLE_OUTPUT) {
for(int i=0; i<num_events; i++) {
for(int d=0; d<num_dimensions-1; d++) {
fprintf(fresults,"%f,",fcs_data_by_event[i*num_dimensions+d]);
}
fprintf(fresults,"%f",fcs_data_by_event[i*num_dimensions+num_dimensions-1]);
fprintf(fresults,"\t");
for(int c=0; c<num_clusters-1; c++) {
fprintf(fresults,"%f,",clusters.memberships[c*num_events+i]);
}
fprintf(fresults,"%f",clusters.memberships[(num_clusters-1)*num_events+i]);
fprintf(fresults,"\n");
}
}
fclose(fresults);
io_time += (double)(clock() - io_timer);
printf("\n");
printf( "I/O time: %f (ms)\n", 1000.0*io_time/CLOCKS_PER_SEC);
printf( "CPU processing time: %f (ms)\n", 1000.0*cpu_time/CLOCKS_PER_SEC);
total_time += (double)(clock() - total_timer);
printf( "Total time: %f (ms)\n", 1000.0*total_time/CLOCKS_PER_SEC);
// cleanup host memory
free(fcs_data_by_event);
free(fcs_data_by_dimension);
free(clusters.N);
free(clusters.pi);
free(clusters.constant);
free(clusters.avgvar);
free(clusters.means);
free(clusters.R);
free(clusters.Rinv);
free(clusters.memberships);
return 0;
}
///////////////////////////////////////////////////////////////////////////////
// Validate command line arguments
///////////////////////////////////////////////////////////////////////////////
int validateArguments(int argc, char** argv, int* num_clusters) {
if(argc == 4) {
// parse num_clusters
if(!sscanf(argv[1],"%d",num_clusters)) {
printf("Invalid number of starting clusters\n\n");
printUsage(argv);
return 1;
}
// Check bounds for num_clusters
if(*num_clusters < 1 || *num_clusters > MAX_CLUSTERS) {
printf("Invalid number of starting clusters (max %d)\n\n", MAX_CLUSTERS);
printUsage(argv);
return 1;
}
// parse infile
FILE* infile = fopen(argv[2],"r");
if(!infile) {
printf("Invalid infile.\n\n");
printUsage(argv);
return 2;
}
// Clean up so the EPA is happy
fclose(infile);
//fclose(outfile);
return 0;
} else {
printUsage(argv);
return 1;
}
}
///////////////////////////////////////////////////////////////////////////////
// Print usage statement
///////////////////////////////////////////////////////////////////////////////
void printUsage(char** argv)
{
printf("Usage: %s num_clusters infile outfile\n",argv[0]);
printf("\t num_clusters: The number of starting clusters\n");
printf("\t infile: ASCII space-delimited FCS data file\n");
printf("\t outfile: Clustering results output file\n");
}
void writeCluster(FILE* f, clusters_t clusters, int c, int num_dimensions) {
fprintf(f,"Probability: %f\n", clusters.pi[c]);
fprintf(f,"N: %f\n",clusters.N[c]);
fprintf(f,"Means: ");
for(int i=0; i<num_dimensions; i++){
fprintf(f,"%f ",clusters.means[c*num_dimensions+i]);
}
fprintf(f,"\n");
fprintf(f,"\nR Matrix:\n");
for(int i=0; i<num_dimensions; i++) {
for(int j=0; j<num_dimensions; j++) {
fprintf(f,"%f ", clusters.R[c*num_dimensions*num_dimensions+i*num_dimensions+j]);
}
fprintf(f,"\n");
}
fflush(f);
}
void printCluster(clusters_t clusters, int c, int num_dimensions) {
writeCluster(stdout,clusters,c,num_dimensions);
}