-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatics-core.agda
416 lines (398 loc) · 19.8 KB
/
statics-core.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
open import List
open import Nat
open import Prelude
open import complete-constraints-core
open import constraints-core
open import contexts
open import core
open import htyp-decidable
open import patterns-core
open import result-judgements
module statics-core where
mutual
-- type assignment
--
-- note that the on-paper version of this judgement includes
-- only a single hole context Δ for both expressions and patterns.
-- however, since we choose to include hole closures here
-- (see the definition of subst-env below), expression holes
-- require hole closures while pattern holes only require the
-- type of the hole. thus, we must explicitly separate this into
-- two contexts Δ and Δp in this mechanization.
--
-- additionally, note that we do not include exhaustiveness
-- or redundancy checking as part of the typing rule for match
-- expression, and instead include them as separate judgements.
-- while this is benenficial in that it makes these checks
-- optional, it is not merely a matter of taste. these checks
-- are defined in terms of the entailment judgement given below,
-- which itself is circularly defined using this typing judgement
-- to the left of an arrow. thus, including such checks here
-- would break positivity.
--
-- morally, however, this does not actually matter. while the
-- definition of entailment technically relies on the typing
-- judgement, as proved on paper (although unfortunately not
-- mechanized here), entailment ends up being equivalent
-- to certain inconsistency conditions looking only at the
-- constraints themselves without making reference to typing.
-- this avoids any actual circularity
data _,_,_⊢_::_ : (Γ : tctx) → (Δ : hctx) → (Δp : phctx) →
(e : ihexp) → (τ : htyp) → Set where
TUnit : ∀{Γ Δ Δp} →
Γ , Δ , Δp ⊢ unit :: unit
TNum : ∀{Γ Δ Δp n} →
Γ , Δ , Δp ⊢ (N n) :: num
TVar : ∀{Γ x τ Δ Δp} →
(x , τ) ∈ Γ →
Γ , Δ , Δp ⊢ (X x) :: τ
TLam : ∀{Γ x τ1 Δ Δp e τ2} →
x # Γ →
(Γ ,, (x , τ1)) , Δ , Δp ⊢ e :: τ2 →
Γ , Δ , Δp ⊢ (·λ x ·[ τ1 ] e) :: (τ1 ==> τ2)
TAp : ∀{Γ Δ Δp e1 e2 τ τ2} →
Γ , Δ , Δp ⊢ e1 :: (τ2 ==> τ) →
Γ , Δ , Δp ⊢ e2 :: τ2 →
Γ , Δ , Δp ⊢ (e1 ∘ e2) :: τ
TInl : ∀{Γ Δ Δp e τ1 τ2} →
Γ , Δ , Δp ⊢ e :: τ1 →
Γ , Δ , Δp ⊢ inl τ2 e :: τ1 ⊕ τ2
TInr : ∀{Γ Δ Δp e τ1 τ2} →
Γ , Δ , Δp ⊢ e :: τ2 →
Γ , Δ , Δp ⊢ inr τ1 e :: τ1 ⊕ τ2
TMatchZPre : ∀{Γ Δ Δp e τ τ' r rs ξ} →
Γ , Δ , Δp ⊢ e :: τ →
Γ , Δ , Δp ⊢ (r / rs) ::s τ [ ξ ]=> τ' →
Γ , Δ , Δp ⊢
match e ·: τ of (nil / r / rs) :: τ'
TMatchNZPre : ∀{Γ Δ Δp e τ τ' rs-pre r rs-post ξpre ξrest} →
Γ , Δ , Δp ⊢ e :: τ →
e final →
Γ , Δ , Δp ⊢ rs-pre ::s τ [ ξpre ]=> τ' →
Γ , Δ , Δp ⊢ (r / rs-post) ::s τ [ ξrest ]=> τ' →
(e ⊧̇†? ξpre → ⊥) →
Γ , Δ , Δp ⊢
match e ·: τ of (rs-pre / r / rs-post) :: τ'
TPair : ∀{Γ Δ Δp e1 e2 τ1 τ2} →
Γ , Δ , Δp ⊢ e1 :: τ1 →
Γ , Δ , Δp ⊢ e2 :: τ2 →
Γ , Δ , Δp ⊢ ⟨ e1 , e2 ⟩ :: (τ1 ⊠ τ2)
TFst : ∀{Γ Δ Δp e τ1 τ2} →
Γ , Δ , Δp ⊢ e :: (τ1 ⊠ τ2) →
Γ , Δ , Δp ⊢ (fst e) :: τ1
TSnd : ∀{Γ Δ Δp e τ1 τ2} →
Γ , Δ , Δp ⊢ e :: (τ1 ⊠ τ2) →
Γ , Δ , Δp ⊢ (snd e) :: τ2
TEHole : ∀{Γ Δ Δp u σ Γ' τ} →
(u , (Γ' , τ)) ∈ Δ →
Γ , Δ , Δp ⊢ σ :se: Γ' →
Γ , Δ , Δp ⊢ ⦇-⦈⟨ u , σ ⟩ :: τ
THole : ∀{Γ Δ Δp u σ Γ' τ e τ'} →
(u , (Γ' , τ)) ∈ Δ →
Γ , Δ , Δp ⊢ σ :se: Γ' →
Γ , Δ , Δp ⊢ e :: τ' →
Γ , Δ , Δp ⊢ ⦇⌜ e ⌟⦈⟨ u , σ ⟩ :: τ
-- substitution environment typing
--
-- typing for the substitution environments for hole
-- closures à la Hazel. while not included on-paper,
-- these will be necessary to eventually support a
-- fill-and-resume operation, so we include them here
-- with future development in mind. they have no effect
-- on the rest of the theory
data _,_,_⊢_:se:_ : (Γ : tctx) → (Δ : hctx) → (Δp : phctx) →
(σ : subst-env) → (Γ' : tctx) → Set where
STId : ∀{Γ Δ Δp Γ'} →
((x : Nat) (τ : htyp) →
(x , τ) ∈ Γ' →
(x , τ) ∈ Γ) →
Γ , Δ , Δp ⊢ Id Γ' :se: Γ'
STSubst : ∀{Γ Δ Δp d y τ σ Γ'} →
(Γ ,, (y , τ)) , Δ , Δp ⊢ σ :se: Γ' →
Γ , Δ , Δp ⊢ d :: τ →
Γ , Δ , Δp ⊢ Subst d y σ :se: Γ'
-- rule typing
--
-- the rule r transforms a final expression of type τ to a
-- final expression of type τ', emitting the constraint ξ
data _,_,_⊢_::_[_]=>_ : (Γ : tctx) → (Δ : hctx) → (Δp : phctx) →
(r : rule) → (τ : htyp) → (ξ : constr) →
(τ' : htyp) → Set where
RTRule : ∀{Γ Δ Δp p e τ τ' ξ Γp} →
Δp ⊢ p :: τ [ ξ ]⊣ Γp →
Γ ## Γp →
(Γ ∪ Γp) , Δ , Δp ⊢ e :: τ' →
Γ , Δ , Δp ⊢ (p => e) :: τ [ ξ ]=> τ'
-- rules typing
--
-- the rules rs transform a final expression of type τ to a final
-- expression of type τ', emitting constraint ξrs
data _,_,_⊢_::s_[_]=>_ : (Γ : tctx) → (Δ : hctx) → (Δp : phctx) →
(rs : rules) → (τ : htyp) →
(ξrs : constr) → (τ' : htyp) → Set where
RTOneRule : ∀{Γ Δ Δp r τ ξr τ'} →
Γ , Δ , Δp ⊢ r :: τ [ ξr ]=> τ' →
Γ , Δ , Δp ⊢ (r / nil) ::s τ [ ξr ]=> τ'
RTRules : ∀{Γ Δ Δp r rs τ ξr ξrs τ'} →
Γ , Δ , Δp ⊢ r :: τ [ ξr ]=> τ' →
Γ , Δ , Δp ⊢ rs ::s τ [ ξrs ]=> τ' →
Γ , Δ , Δp ⊢ (r / rs) ::s τ [ ξr ∨ ξrs ]=> τ'
-- substitution list typing
--
-- this is the same as the on-paper judgement, but it is
-- worth mentioning why this differs from the substitution
-- environment typing shown above as in Hazel.
--
-- an environment σ records a series of substitutions which are
-- applied one after another, and the typing judgement
-- Γ , Δ , Δp ⊢ σ :se: Γσ tells us that any term which is well-typed
-- in Γσ will be well-typed in Γ after applying σ. this is exactly
-- what we want for recording the substitutions around a non-empty
-- hole during live programming.
-- contrastingly, a list of substitutions θ as emitted by a match
-- expression is not morally applied "one by one", but rather
-- applied "simultaneously" when the match expression is evaluted.
-- for this reason, we don't extend Γ to Γ ,, (y , τ) in the
-- recursive part of STExtend, while we do in STSubst. as well,
-- we require that the type Γθ records all typing
-- assumptions about substituted variables in θ, while the
-- formulation of STId ends up only forcing that the type Γσ of
-- some σ records a subset thereof.
data _,_,_⊢_:sl:_ : tctx → hctx → phctx →
subst-list → tctx → Set where
STEmpty : ∀{Γ Δ Δp} →
Γ , Δ , Δp ⊢ [] :sl: ∅
STExtend : ∀{Γ Δ Δp θ Γθ d τ y} →
y # Γ →
Γ , Δ , Δp ⊢ θ :sl: Γθ →
Γ , Δ , Δp ⊢ d :: τ →
Γ , Δ , Δp ⊢ ((d , τ , y) :: θ) :sl: (Γθ ,, (y , τ))
-- ξ1 entails ξ2
--
-- note that, while suppressed on paper, the definition of
-- entailment assumes a fixed type assignment for ξ1 and ξ2.
-- since we don't actually have type unicity for constraints,
-- we need to be explicit about that typing assumption here
-- in order to ever make use of the entailment.
data _·:_c⊧̇_ : (ξ1 : constr) → (τ : htyp) →
(ξ2 : constr) → Set where
Entails : ∀{ξ1 ξ2 τ} →
ξ1 :c: τ →
ξ2 :c: τ →
(∀{Δ Δp e} →
∅ , Δ , Δp ⊢ e :: τ →
e val →
e ⊧̇†? ξ1 →
e ⊧̇ ξ2) →
ξ1 ·: τ c⊧̇ ξ2
-- ξ1 potentially entails ξ2
data _·:_c⊧̇†?_ : (ξ1 : constr) → (τ : htyp) →
(ξ2 : constr) → Set where
PotEntails : ∀{ξ1 ξ2 τ} →
ξ1 :c: τ →
ξ2 :c: τ →
(∀{Δ Δp e} →
∅ , Δ , Δp ⊢ e :: τ →
e final →
e ⊧̇†? ξ1 →
e ⊧̇†? ξ2) →
ξ1 ·: τ c⊧̇†? ξ2
-- ξ1 entails ξ2, where ξ1 and ξ2 are complete constraints
data _·:_cc⊧_ : (ξ1 : comp-constr) → (τ : htyp) →
(ξ2 : comp-constr) → Set where
Entails : ∀{ξ1 ξ2 τ} →
ξ1 :cc: τ →
ξ2 :cc: τ →
(∀{Δ Δp e} →
∅ , Δ , Δp ⊢ e :: τ →
e val →
e ⊧ ξ1 →
e ⊧ ξ2) →
ξ1 ·: τ cc⊧ ξ2
-- rs is matched by expressions of type τ, emitting constraint ξrs.
--
-- since we separate exhaustiveness checking from type checking in
-- this mechanization, for exhaustiveness, we don't actually care
-- about anything other than the patterns in our term. thus,
-- we use this is slightly modified version of the other rule typing
-- judgement, but without checking the types of any expressions
data _⊢_::s_[_] : (Δp : phctx) → (rs : rules) →
(τ : htyp) → (ξrs : constr) → Set where
RTOneRule : ∀{Δp p e τ ξr Γp} →
Δp ⊢ p :: τ [ ξr ]⊣ Γp →
Δp ⊢ ((p => e) / nil) ::s τ [ ξr ]
RTRules : ∀{Δp p e rs τ ξr ξrs Γp} →
Δp ⊢ p :: τ [ ξr ]⊣ Γp →
Δp ⊢ rs ::s τ [ ξrs ] →
Δp ⊢ ((p => e) / rs) ::s τ [ ξr ∨ ξrs ]
-- rs is matched by expressions of type τ, emitting constraint ξrs.
-- moreover, ξrs does not entail ξpre, i.e., ξrs is non-redundant
-- assuming ξpre denotes the constraint given by all previously
-- considered patterns
data _⊢_::s_[_nr/_] : (Δp : phctx) → (rs : rules) → (τ : htyp) →
(ξpre : constr) → (ξrs : constr) → Set where
RTOneRule : ∀{Δp p e τ ξpre ξr Γp} →
Δp ⊢ p :: τ [ ξr ]⊣ Γp →
(ξr ·: τ c⊧̇ ξpre → ⊥) →
Δp ⊢ ((p => e) / nil) ::s τ [ ξpre nr/ ξr ]
RTRules : ∀{Δp p e rs τ ξpre ξr ξrs Γp} →
Δp ⊢ p :: τ [ ξr ]⊣ Γp →
(ξr ·: τ c⊧̇ ξpre → ⊥) →
Δp ⊢ rs ::s τ [ ξpre ∨ ξr nr/ ξrs ] →
Δp ⊢ ((p => e) / rs) ::s τ [ ξpre nr/ ξr ∨ ξrs ]
mutual
-- all match expressions occuring in e are exhaustive
data _⊢_exhaustive : (Δp : phctx) → (e : ihexp) → Set where
EXUnit : ∀{Δp} →
Δp ⊢ unit exhaustive
EXNum : ∀{Δp n} →
Δp ⊢ (N n) exhaustive
EXVar : ∀{Δp x} →
Δp ⊢ (X x) exhaustive
EXLam : ∀{Δp x τ1 e} →
Δp ⊢ e exhaustive →
Δp ⊢ (·λ x ·[ τ1 ] e) exhaustive
EXAp : ∀{Δp e1 e2} →
Δp ⊢ e1 exhaustive →
Δp ⊢ e2 exhaustive →
Δp ⊢ (e1 ∘ e2) exhaustive
EXInl : ∀{Δp e τ2} →
Δp ⊢ e exhaustive →
Δp ⊢ (inl τ2 e) exhaustive
EXInr : ∀{Δp e τ1} →
Δp ⊢ e exhaustive →
Δp ⊢ (inr τ1 e) exhaustive
EXMatchZPre : ∀{Δp e τ r rs ξ} →
Δp ⊢ e exhaustive →
Δp ⊢ (r / rs) ::s τ [ ξ ] →
·⊤ ·: τ c⊧̇†? ξ →
Δp ⊢ (r / rs) exhaustive-targets →
Δp ⊢ (match e ·: τ of (nil / r / rs)) exhaustive
EXMatchNZPre : ∀{Δp e τ rs-pre r rs-post ξpre ξrest} →
Δp ⊢ e exhaustive →
Δp ⊢ rs-pre ::s τ [ ξpre ] →
Δp ⊢ (r / rs-post) ::s τ [ ξrest ] →
·⊤ ·: τ c⊧̇†? (ξpre ∨ ξrest) →
Δp ⊢ rs-pre exhaustive-targets →
Δp ⊢ (r / rs-post) exhaustive-targets →
Δp ⊢ (match e ·: τ of (rs-pre / r / rs-post)) exhaustive
EXPair : ∀{Δp e1 e2} →
Δp ⊢ e1 exhaustive →
Δp ⊢ e2 exhaustive →
Δp ⊢ ⟨ e1 , e2 ⟩ exhaustive
EXFst : ∀{Δp e} →
Δp ⊢ e exhaustive →
Δp ⊢ (fst e) exhaustive
EXSnd : ∀{Δp e} →
Δp ⊢ e exhaustive →
Δp ⊢ (snd e) exhaustive
EXEHole : ∀{Δp u σ} →
Δp ⊢ σ exhaustive-σ →
Δp ⊢ ⦇-⦈⟨ u , σ ⟩ exhaustive
EXHole : ∀{Δp e u σ} →
Δp ⊢ σ exhaustive-σ →
Δp ⊢ e exhaustive →
Δp ⊢ ⦇⌜ e ⌟⦈⟨ u , σ ⟩ exhaustive
-- for each substituted expression d in σ, all match expressions
-- occurring in d are exhaustive
data _⊢_exhaustive-σ : (Δp : phctx) → (σ : subst-env) → Set where
EXσId : ∀{Δp Γ} →
Δp ⊢ (Id Γ) exhaustive-σ
EXσSubst : ∀{Δp d y σ} →
Δp ⊢ σ exhaustive-σ →
Δp ⊢ d exhaustive →
Δp ⊢ (Subst d y σ) exhaustive-σ
-- for each substituted expression d in θ, all match expressions
-- occurring in d are exhaustive
data _⊢_exhaustive-θ : (Δp : phctx) → (θ : subst-list) → Set where
EXθEmpty : ∀{Δp} →
Δp ⊢ [] exhaustive-θ
EXθExtend : ∀{Δp d τ y θ} →
Δp ⊢ θ exhaustive-θ →
Δp ⊢ d exhaustive →
Δp ⊢ ((d , τ , y) :: θ) exhaustive-θ
-- for each rule p => e in rs, all match expressions
-- occurring in e are exhaustive
data _⊢_exhaustive-targets : (Δp : phctx) → (rs : rules) → Set where
EXNoRules : ∀{Δp} →
Δp ⊢ nil exhaustive-targets
EXRules : ∀{Δp p e rs} →
Δp ⊢ e exhaustive →
Δp ⊢ rs exhaustive-targets →
Δp ⊢ ((p => e) / rs) exhaustive-targets
mutual
-- no match expression occurring in e contains redundant rules
data _⊢_nonredundant : (Δp : phctx) → (e : ihexp) → Set where
NRUnit : ∀{Δp} →
Δp ⊢ unit nonredundant
NRNum : ∀{Δp n} →
Δp ⊢ (N n) nonredundant
NRVar : ∀{Δp x} →
Δp ⊢ (X x) nonredundant
NRLam : ∀{Δp x τ1 e} →
Δp ⊢ e nonredundant →
Δp ⊢ (·λ x ·[ τ1 ] e) nonredundant
NRAp : ∀{Δp e1 e2} →
Δp ⊢ e1 nonredundant →
Δp ⊢ e2 nonredundant →
Δp ⊢ (e1 ∘ e2) nonredundant
NRInl : ∀{Δp e τ2} →
Δp ⊢ e nonredundant →
Δp ⊢ (inl τ2 e) nonredundant
NRInr : ∀{Δp e τ1} →
Δp ⊢ e nonredundant →
Δp ⊢ (inr τ1 e) nonredundant
NRMatchZPre : ∀{Δp e τ r rs ξ} →
Δp ⊢ e nonredundant →
Δp ⊢ (r / rs) ::s τ [ ·⊥ nr/ ξ ] →
Δp ⊢ (r / rs) nonredundant-targets →
Δp ⊢ (match e ·: τ of (nil / r / rs)) nonredundant
NRMatchNZPre : ∀{Δp e τ rs-pre r rs-post ξpre ξrest} →
Δp ⊢ e nonredundant →
Δp ⊢ rs-pre ::s τ [ ·⊥ nr/ ξpre ] →
Δp ⊢ (r / rs-post) ::s τ [ ·⊥ ∨ ξpre nr/ ξrest ] →
Δp ⊢ rs-pre nonredundant-targets →
Δp ⊢ (r / rs-post) nonredundant-targets →
Δp ⊢ (match e ·: τ of (rs-pre / r / rs-post)) nonredundant
NRPair : ∀{Δp e1 e2} →
Δp ⊢ e1 nonredundant →
Δp ⊢ e2 nonredundant →
Δp ⊢ ⟨ e1 , e2 ⟩ nonredundant
NRFst : ∀{Δp e} →
Δp ⊢ e nonredundant →
Δp ⊢ (fst e) nonredundant
NRSnd : ∀{Δp e} →
Δp ⊢ e nonredundant →
Δp ⊢ (snd e) nonredundant
NREHole : ∀{Δp u σ} →
Δp ⊢ ⦇-⦈⟨ u , σ ⟩ nonredundant
NRHole : ∀{Δp e u σ} →
Δp ⊢ e nonredundant →
Δp ⊢ ⦇⌜ e ⌟⦈⟨ u , σ ⟩ nonredundant
-- for each substituted expression d in σ, no match expression
-- occurring in d contains redundant rules
data _⊢_nonredundant-σ : (Δp : phctx) → (σ : subst-env) → Set where
NRσId : ∀{Δp Γ} →
Δp ⊢ (Id Γ) nonredundant-σ
NRσSubst : ∀{Δp d y σ} →
Δp ⊢ σ nonredundant-σ →
Δp ⊢ d nonredundant →
Δp ⊢ (Subst d y σ) nonredundant-σ
-- for each substituted expression d in θ, no match expression
-- occurring in d contains redundant rules
data _⊢_nonredundant-θ : (Δp : phctx) → (θ : subst-list) → Set where
NRθEmpty : ∀{Δp} →
Δp ⊢ [] nonredundant-θ
NRθExtend : ∀{Δp d τ y θ} →
Δp ⊢ θ nonredundant-θ →
Δp ⊢ d nonredundant →
Δp ⊢ ((d , τ , y) :: θ) nonredundant-θ
-- for each rule p => e in rs, no match expression
-- occurring in e contains redundant rules
data _⊢_nonredundant-targets : (Δp : phctx) → (rs : rules) → Set where
NRNoRules : ∀{Δp} →
Δp ⊢ nil nonredundant-targets
NRRules : ∀{Δp p e rs} →
Δp ⊢ e nonredundant →
Δp ⊢ rs nonredundant-targets →
Δp ⊢ ((p => e) / rs) nonredundant-targets