-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresult-judgements.agda
140 lines (127 loc) · 4.53 KB
/
result-judgements.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
open import List
open import Prelude
open import core
open import patterns-core
open import value-judgements
module result-judgements where
open value-judgements public
mutual
-- e is indeterminate
data _indet : (e : ihexp) → Set where
IAp : ∀{e1 e2} →
e1 indet →
e2 final →
(e1 ∘ e2) indet
IInl : ∀{e τ} →
e indet →
(inl τ e) indet
IInr : ∀{e τ} →
e indet →
(inr τ e) indet
IMatch : ∀{e τ rs-pre pr er rs-post} →
e final →
e ·: τ ?▹ pr →
(match e ·: τ of (rs-pre / (pr => er) / rs-post)) indet
IPairL : ∀{e1 e2} →
e1 indet →
e2 val →
⟨ e1 , e2 ⟩ indet
IPairR : ∀{e1 e2} →
e1 val →
e2 indet →
⟨ e1 , e2 ⟩ indet
IPair : ∀{e1 e2} →
e1 indet →
e2 indet →
⟨ e1 , e2 ⟩ indet
IFst : ∀{e} →
((e1 e2 : ihexp) →
e ≠ ⟨ e1 , e2 ⟩) →
e indet →
(fst e) indet
ISnd : ∀{e} →
((e1 e2 : ihexp) →
e ≠ ⟨ e1 , e2 ⟩) →
e indet →
(snd e) indet
IEHole : ∀{u σ} →
⦇-⦈⟨ u , σ ⟩ indet
IHole : ∀{e u σ} →
e final →
⦇⌜ e ⌟⦈⟨ u , σ ⟩ indet
-- e is final
data _final : (e : ihexp) → Set where
FVal : ∀{e} →
e val →
e final
FIndet : ∀{e} →
e indet →
e final
-- all substitutions in θ are final
data _final-θ : subst-list → Set where
FθEmpty : [] final-θ
FθExtend : ∀{d y θ} →
θ final-θ →
d final →
((d , y) :: θ) final-θ
inl-final : ∀{e τ} → (inl τ e) final → e final
inl-final (FVal (VInl eval)) = FVal eval
inl-final (FIndet (IInl eind)) = FIndet eind
final-inl : ∀{e τ} → e final → (inl τ e) final
final-inl (FVal eval) = FVal (VInl eval)
final-inl (FIndet ind) = FIndet (IInl ind)
inr-final : ∀{e τ} → (inr τ e) final → e final
inr-final (FVal (VInr eval)) = FVal eval
inr-final (FIndet (IInr eind)) = FIndet eind
final-inr : ∀{e τ} → e final → (inr τ e) final
final-inr (FVal eval) = FVal (VInr eval)
final-inr (FIndet ind) = FIndet (IInr ind)
pair-final : ∀{e1 e2} →
⟨ e1 , e2 ⟩ final →
e1 final × e2 final
pair-final (FVal (VPair val1 val2)) = FVal val1 , FVal val2
pair-final (FIndet (IPairL ind1 val2)) =
FIndet ind1 , FVal val2
pair-final (FIndet (IPairR val1 ind2)) =
FVal val1 , FIndet ind2
pair-final (FIndet (IPair ind1 ind2)) =
FIndet ind1 , FIndet ind2
final-pair : ∀{e1 e2} →
e1 final →
e2 final →
⟨ e1 , e2 ⟩ final
final-pair (FVal val1) (FVal val2) =
FVal (VPair val1 val2)
final-pair (FVal val1) (FIndet ind2) =
FIndet (IPairR val1 ind2)
final-pair (FIndet ind1) (FVal val2) =
FIndet (IPairL ind1 val2)
final-pair (FIndet ind1) (FIndet ind2) =
FIndet (IPair ind1 ind2)
final-notintro-indet : ∀{e} →
e final →
e notintro →
e indet
final-notintro-indet (FVal ()) NVAp
final-notintro-indet (FVal ()) NVMatch
final-notintro-indet (FVal ()) NVFst
final-notintro-indet (FVal ()) NVSnd
final-notintro-indet (FVal ()) NVEHole
final-notintro-indet (FVal ()) NVHole
final-notintro-indet (FIndet ind) ni = ind
val-indet-not : ∀{e} →
e val →
e indet →
⊥
val-indet-not VNum ()
val-indet-not VLam ()
val-indet-not (VInl eval) (IInl ind) =
val-indet-not eval ind
val-indet-not (VInr eval) (IInr ind) =
val-indet-not eval ind
val-indet-not (VPair eval1 eval2) (IPairL ind1 val2) =
val-indet-not eval1 ind1
val-indet-not (VPair eval1 eval2) (IPairR val1 ind2) =
val-indet-not eval2 ind2
val-indet-not (VPair eval1 eval2) (IPair ind1 ind2) =
val-indet-not eval1 ind1