-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathpalindromePartitioning.II.cpp
223 lines (195 loc) · 8.2 KB
/
palindromePartitioning.II.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// Source : https://oj.leetcode.com/problems/palindrome-partitioning-ii/
// Author : Hao Chen
// Date : 2014-08-24
/**********************************************************************************
*
* Given a string s, partition s such that every substring of the partition is a palindrome.
*
* Return the minimum cuts needed for a palindrome partitioning of s.
*
* For example, given s = "aab",
* Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.
*
*
**********************************************************************************/
#include <iostream>
#include <string>
#include <vector>
#include <map>
using namespace std;
bool isPalindrome(string &s, int start, int end);
void minCutHelper(string &s, int start, int steps, int& min );
int minCutHelper(string &s, int steps, int& minSteps );
int minCut_DP(string& s);
int minCut(string s) {
#define INT_MAX 2147483647
if(s.size()<=1) return 0;
int min = INT_MAX;
//minCutHelper(s, 0, 0, min);
//return min-1;
//int m = minCutHelper(s, 0, min);
//return m-1;
return minCut_DP(s);
}
/*
* Dynamic Programming
* -------------------
*
* Define res[i] = the minimum cut from 0 to i in the string.
* The result eventually is res[s.size()-1].
* We know res[0]=0. Next we are looking for the optimal solution function f.
*
* For example, let s = "leet".
*
* f(0) = 0; // minimum cut of str[0:0]="l", which is a palindrome, so not cut is needed.
* f(1) = 1; // str[0:1]="le" How to get 1?
* f(1) might be: (1) f(0)+1=1, the minimum cut before plus the current char.
* (2) 0, if str[0:1] is a palindrome (here "le" is not )
* f(2) = 1; // str[0:2] = "lee" How to get 2?
* f(2) might be: (1) f(1) + 1=2
* (2) 0, if str[0:2] is a palindrome (here "lee" is not)
* (3) f(0) + 1, if str[1:2] is a palindrome, yes!
* f(3) = 2; // str[0:3] = "leet" How to get 2?
* f(3) might be: (1) f(2) + 1=2
* (2) 0, if str[0:3] is a palindrome (here "leet" is not)
* (3) f(0) + 1, if str[1:3] is a palindrome (here "eet" is not)
* (4) f(1) + 1, if str[2:e] is a palindrome (here "et" is not)
* OK, output f(3) =2 as the result.
*
* So, the optimal function is:
*
* f(i) = min [ f(j)+1, j=0..i-1 and str[j:i] is palindrome
* 0, if str[0,i] is palindrome ]
*
* The above algorithm works well for the smaller test cases, however for the big cases, it still cannot pass.
* Why? The way we test the palindrome is time-consuming.
*
* Also using the similar DP idea, we can construct the look-up table before the main part above,
* so that the palindrome testing becomes the looking up operation. The way we construct the table is also the idea of DP.
*
* e.g. mp[i][j]=true if str[i:j] is palindrome.
* mp[i][i]=true;
* mp[i][j] = true if str[i]==str[j] and (mp[i+1][j-1]==true or j-i<2 ) j-i<2 ensures the array boundary.
*/
int minCut_DP(string& s) {
//res[] is for minimal cut DP
vector<int>res(s.size(),0);
//mp[][] is for palindrome checking DP
bool mp[s.size()][s.size()];
//construct the pailndrome checking matrix
// 1) matrix[i][j] = true; if (i==j) -- only one char
// 2) matrix[i][j] = true; if (i==j+1) && s[i]==s[j] -- only two chars
// 3) matrix[i][j] = matrix[i+1][j-1]; if s[i]==s[j] -- more than two chars
//
//note: 1) and 2) can be combined together
for (int i=s.size()-1;i>=0;i--){
for (int j=i;j<s.size();j++){
if ((s[i]==s[j]) && (j-i<2 || mp[i+1][j-1])){
mp[i][j]=true;
}else{
mp[i][j]=false;
}
}
}
//minimal cut dp
for (int i=0;i<s.size();i++){
//if s[0..i] is palindrome, then no need to cut
if (mp[0][i] == true){
res[i]=0;
}else{
// if s[0..i] isn't palindrome
// then, for each 0 to i, find a "j" which meets two conditions:
// a) s[j+1..i] are palindrome.
// b) res[j]+1 is minimal
int ms = s.size();
for (int j=0; j<i; j++){
if (mp[j+1][i] && ms>res[j]+1 ) {
ms=res[j]+1;
}
}
res[i]=ms;
}
}
return res[s.size()-1];
}
//More Optimized DFS - Time Limit Exceeded
int minCutHelper(string &s, int steps, int& minSteps ) {
// remove the steps if it's greater than minSteps
if (minSteps <= steps) {
return -2;
}
// adding the cache to remove the duplicated calculation
static map<string, int> cache;
if ( cache.find(s)!=cache.end() ){
if (s.size()>0)
cout << s << ":" << cache[s] << endl;
return cache[s];
}
if (s.size()==0) {
if (minSteps > steps){
minSteps = steps;
}
cache[s] = 0;
return 0;
}
int min = INT_MAX;
string subs;
int m;
for( int i=s.size()-1; i>=0; i-- ) {
//remove the steps which greater than minSteps
if ( i < s.size()-1 && minSteps - steps <= 1) {
break;
}
if ( isPalindrome(s, 0, i) ){
//if ( i == s.size()-1 ) {
// m = 1;
//}else{
subs = s.substr(i+1, s.size()-i-1);
m = minCutHelper(subs, steps+1, minSteps) + 1;
//}
if (m < 0) continue;
cache[subs] = m-1;
if (min > m ){
min = m;
}
}
}
return min;
}
//Optimized DFS - Time Limit Exceeded
void minCutHelper(string &s, int start, int steps, int& min ) {
if (start == s.size()) {
if (steps < min) {
min = steps;
return;
}
}
//GREED: find the biggest palindrome first
for(int i=s.size()-1; i>=start; i--){
//cut unnecessary DFS
if ( min > steps && isPalindrome(s, start, i)) {
minCutHelper(s, i+1, steps+1, min );
}
}
}
//traditional palindrome checking function.
bool isPalindrome(string &s, int start, int end) {
while(start < end) {
if(s[start] != s[end]) {
return false;
}
start++; end--;
}
return true;
}
//ababababababababababababcbabababababababababababa
//fifgbeajcacehiicccfecbfhhgfiiecdcjjffbghdidbhbdbfbfjccgbbdcjheccfbhafehieabbdfeigbiaggchaeghaijfbjhi
//aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
int main(int argc, char** argv)
{
string s("aab");
if ( argc > 1 ){
s = argv[1];
}
cout << s << " : " << minCut(s) << endl;
}