-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathNumberOfDifferentSubsequencesGcds.cpp
78 lines (73 loc) · 2.16 KB
/
NumberOfDifferentSubsequencesGcds.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
// Source : https://leetcode.com/problems/number-of-different-subsequences-gcds/
// Author : Hao Chen
// Date : 2021-04-05
/*****************************************************************************************************
*
* You are given an array nums that consists of positive integers.
*
* The GCD of a sequence of numbers is defined as the greatest integer that divides all the numbers in
* the sequence evenly.
*
* For example, the GCD of the sequence [4,6,16] is 2.
*
* A subsequence of an array is a sequence that can be formed by removing some elements (possibly
* none) of the array.
*
* For example, [2,5,10] is a subsequence of [1,2,1,2,4,1,5,10].
*
* Return the number of different GCDs among all non-empty subsequences of nums.
*
* Example 1:
*
* Input: nums = [6,10,3]
* Output: 5
* Explanation: The figure shows all the non-empty subsequences and their GCDs.
* The different GCDs are 6, 10, 3, 2, and 1.
*
* Example 2:
*
* Input: nums = [5,15,40,5,6]
* Output: 7
*
* Constraints:
*
* 1 <= nums.length <= 10^5
* 1 <= nums[i] <= 2 * 10^5
******************************************************************************************************/
class Solution {
private:
// Euclidean algorithm
// https://en.wikipedia.org/wiki/Euclidean_algorithm
int gcd(int a, int b) {
while ( b != 0 ) {
int t = b;
b = a % b;
a = t;
}
return a;
}
public:
int countDifferentSubsequenceGCDs(vector<int>& nums) {
int len = nums.size();
vector<int> gcds(200001, 0);
for(int i=0; i<len; i++) {
int n = nums[i];
int m = sqrt(n);
for(int g=1; g<=m; g++){
if (n % g != 0) continue;
int x = g, y = n/g;
if (x != y ){
gcds[x] = gcd(n, gcds[x]);
gcds[y] = gcd(n, gcds[y]);
}else {
gcds[x] = gcd(n, gcds[x]);
}
}
}
int cnt = 0;
for(int i=1; i<gcds.size(); i++){
if (gcds[i]==i) cnt++;
}
return cnt;
}
};