-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathMinimumNumberOfOperationsToReinitializeAPermutation.cpp
77 lines (73 loc) · 1.97 KB
/
MinimumNumberOfOperationsToReinitializeAPermutation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
// Source : https://leetcode.com/problems/minimum-number-of-operations-to-reinitialize-a-permutation/
// Author : Hao Chen
// Date : 2021-03-28
/*****************************************************************************************************
*
* You are given an even integer n. You initially have a permutation perm of size n where
* perm[i] == i (0-indexed).
*
* In one operation, you will create a new array arr, and for each i:
*
* If i % 2 == 0, then arr[i] = perm[i / 2].
* If i % 2 == 1, then arr[i] = perm[n / 2 + (i - 1) / 2].
*
* You will then assign arr to perm.
*
* Return the minimum non-zero number of operations you need to perform on perm to return the
* permutation to its initial value.
*
* Example 1:
*
* Input: n = 2
* Output: 1
* Explanation: prem = [0,1] initially.
* After the 1^st operation, prem = [0,1]
* So it takes only 1 operation.
*
* Example 2:
*
* Input: n = 4
* Output: 2
* Explanation: prem = [0,1,2,3] initially.
* After the 1^st operation, prem = [0,2,1,3]
* After the 2^nd operation, prem = [0,1,2,3]
* So it takes only 2 operations.
*
* Example 3:
*
* Input: n = 6
* Output: 4
*
* Constraints:
*
* 2 <= n <= 1000
* n is even.
******************************************************************************************************/
class Solution {
private:
bool check(vector<int>& a) {
for(int i=0; i<a.size(); i++) {
if (a[i] != i) return false;
}
return true;
}
public:
int reinitializePermutation(int n) {
vector<int> perm(n);
vector<int> arr(n);
for(int i=0; i<n; i++) {
perm[i] = i;
}
int cnt = 0;
while(1){
cnt++;
for(int i=0; i<n; i++) {
if (i%2==0) arr[i] = perm[i / 2];
else arr[i] = perm[n / 2 + (i - 1) / 2];
}
if (check(arr)) break;
perm = arr;
}
return cnt;
}
};