-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathintersectionOfTwoArraysII.cpp
87 lines (79 loc) · 2.89 KB
/
intersectionOfTwoArraysII.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
// Source : https://leetcode.com/problems/intersection-of-two-arrays-ii/
// Author : Calinescu Valentin, Hao Chen
// Date : 2016-05-22
/***************************************************************************************
*
* Given two arrays, write a function to compute their intersection.
*
* Example:
* Given nums1 = [1, 2, 2, 1], nums2 = [2, 2], return [2, 2].
*
* Note:
* Each element in the result should appear as many times as it shows in both arrays.
* The result can be in any order.
*
* Follow up:
* What if the given array is already sorted? How would you optimize your algorithm?
* What if nums1's size is small compared to num2's size? Which algorithm is better?
* What if elements of nums2 are stored on disk, and the memory is limited such that you
* cannot load all elements into the memory at once?
*
***************************************************************************************/
/* Solution
* --------
*
* Follow up:
*
* 1)If the given array is already sorted we can skip the sorting.
*
* 2)If nums1 is significantly smaller than nums2 we can only sort nums1 and then binary
* search every element of nums2 in nums1 with a total complexity of (MlogN) or if nums2
* is already sorted we can search every element of nums1 in nums2 in O(NlogM)
*
* 3)Just like 2), we can search for every element in nums2, thus having an online
* algorithm.
*/
class Solution { // O(NlogN + MlogM)
public:
vector<int> intersect(vector<int>& nums1, vector<int>& nums2) {
sort(nums1.begin(), nums1.end());//we sort both vectors in order to intersect
sort(nums2.begin(), nums2.end());//them later in O(N + M), where N = nums1.size()
vector <int> solution; //M = nums2.size()
int index = 0;
bool finished = false;
for(int i = 0; i < nums1.size() && !finished; i++)
{
while(index < nums2.size() && nums1[i] > nums2[index])//we skip over the
index++;//smaller elements in nums2
if(index == nums2.size())//we have reached the end of nums2 so we have no more
finished = true;//elements to add to the intersection
else if(nums1[i] == nums2[index])//we found a common element
{
solution.push_back(nums1[i]);
index++;
}
}
return solution;
}
};
/*
* Just simply use the map can have O(M+N) time complexity.
*
*/
class Solution {
public:
vector<int> intersect(vector<int>& nums1, vector<int>& nums2) {
unordered_map<int, int> m;
for (auto n: nums1) {
m[n]++;
}
vector<int> result;
for (auto n:nums2){
if (m.find(n) != m.end() && m[n]>0 ){
result.push_back(n);
m[n]--;
}
}
return result;
}
};