-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathIntegerBreak.cpp
59 lines (56 loc) · 1.72 KB
/
IntegerBreak.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
// Source : https://leetcode.com/problems/integer-break/
// Author : Hao Chen
// Date : 2016-05-29
/***************************************************************************************
*
* Given a positive integer n, break it into the sum of at least two positive integers
* and maximize the product of those integers. Return the maximum product you can get.
*
* For example, given n = 2, return 1 (2 = 1 + 1); given n = 10, return 36 (10 = 3 + 3
* + 4).
*
* Note: you may assume that n is not less than 2.
*
* There is a simple O(n) solution to this problem.
* You may check the breaking results of n ranging from 7 to 10 to discover the
* regularities.
*
* Credits:Special thanks to @jianchao.li.fighter for adding this problem and creating
* all test cases.
***************************************************************************************/
class Solution {
public:
// As the hint said, checking the n with ranging from 7 to 10 to discover the regularities.
// n = 7, 3*4 = 12
// n = 8, 3*3*2 = 18
// n = 9, 3*3*3 = 27
// n = 10, 3*3*4 = 36
// n = 11, 3*3*3*2 = 54
//
// we can see we can break the number by 3 if it is greater than 4;
//
int integerBreak(int n) {
if ( n == 2 ) return 1;
if ( n == 3 ) return 2;
int result = 1;
while( n > 4 ) {
result *= 3;
n -= 3;
}
result *= n;
return result;
}
};
// DP
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n+1,1);
for(int i=2;i<=n;i++){
for(int j=1;j<=i/2;j++){
dp[i] = max(dp[i],max(dp[j],j)*max(dp[i-j],i-j));
}
}
return dp[n];
}
};