-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathunet.py
246 lines (198 loc) · 7.75 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import math
import torch
from torch import nn
import torch.nn.functional as F
from inspect import isfunction
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
# model
class TimeEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
inv_freq = torch.exp(
torch.arange(0, dim, 2, dtype=torch.float32) *
(-math.log(10000) / dim)
)
self.register_buffer("inv_freq", inv_freq)
def forward(self, input):
shape = input.shape
sinusoid_in = torch.ger(input.view(-1).float(), self.inv_freq)
pos_emb = torch.cat([sinusoid_in.sin(), sinusoid_in.cos()], dim=-1)
pos_emb = pos_emb.view(*shape, self.dim)
return pos_emb
class Swish(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
class Upsample(nn.Module):
def __init__(self, dim):
super().__init__()
self.up = nn.Upsample(scale_factor=2, mode="nearest")
self.conv = nn.Conv2d(dim, dim, 3, padding=1)
def forward(self, x):
return self.conv(self.up(x))
class Downsample(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv = nn.Conv2d(dim, dim, 3, 2, 1)
def forward(self, x):
return self.conv(x)
# building block modules
class Block(nn.Module):
def __init__(self, dim, dim_out, groups=32, dropout=0):
super().__init__()
self.block = nn.Sequential(
# 换用BN层
nn.BatchNorm2d(dim),
# nn.GroupNorm(groups, dim),
Swish(),
nn.Dropout(dropout) if dropout != 0 else nn.Identity(),
nn.Conv2d(dim, dim_out, 3, padding=1)
)
def forward(self, x):
return self.block(x)
class ResnetBlock(nn.Module):
def __init__(self, dim, dim_out, time_emb_dim=None, dropout=0, norm_groups=32):
super().__init__()
self.mlp = nn.Sequential(
Swish(),
nn.Linear(time_emb_dim, dim_out)
) if exists(time_emb_dim) else None
self.block1 = Block(dim, dim_out, groups=norm_groups)
self.block2 = Block(dim_out, dim_out, groups=norm_groups, dropout=dropout)
self.res_conv = nn.Conv2d(
dim, dim_out, 1) if dim != dim_out else nn.Identity()
def forward(self, x, time_emb):
h = self.block1(x)
if exists(self.mlp):
h += self.mlp(time_emb)[:, :, None, None]
h = self.block2(h)
return h + self.res_conv(x)
class SelfAttention(nn.Module):
def __init__(self, in_channel, n_head=1, norm_groups=32):
super().__init__()
self.n_head = n_head
# 同理,此处也更换为BN层
self.norm = nn.BatchNorm2d(in_channel)
# self.norm = nn.GroupNorm(norm_groups, in_channel)
self.qkv = nn.Conv2d(in_channel, in_channel * 3, 1, bias=False)
self.out = nn.Conv2d(in_channel, in_channel, 1)
def forward(self, input):
batch, channel, height, width = input.shape
n_head = self.n_head
head_dim = channel // n_head
norm = self.norm(input)
qkv = self.qkv(norm).view(batch, n_head, head_dim * 3, height, width)
query, key, value = qkv.chunk(3, dim=2) # bhdyx
attn = torch.einsum(
"bnchw, bncyx -> bnhwyx", query, key
).contiguous() / math.sqrt(channel)
attn = attn.view(batch, n_head, height, width, -1)
attn = torch.softmax(attn, -1)
attn = attn.view(batch, n_head, height, width, height, width)
out = torch.einsum("bnhwyx, bncyx -> bnchw", attn, value).contiguous()
out = self.out(out.view(batch, channel, height, width))
return out + input
class ResnetBlocWithAttn(nn.Module):
def __init__(self, dim, dim_out, *, time_emb_dim=None, norm_groups=32, dropout=0, with_attn=False):
super().__init__()
self.with_attn = with_attn
self.res_block = ResnetBlock(
dim, dim_out, time_emb_dim, norm_groups=norm_groups, dropout=dropout)
if with_attn:
self.attn = SelfAttention(dim_out, norm_groups=norm_groups)
def forward(self, x, time_emb):
x = self.res_block(x, time_emb)
if(self.with_attn):
x = self.attn(x)
return x
class UNet(nn.Module):
def __init__(
self,
in_channel=6,
out_channel=3,
inner_channel=8,
norm_groups=32,
channel_mults=(1, 2, 4, 8, 8),
attn_res=[8],
res_blocks=2,
dropout=0,
with_time_emb=False,
image_size=128
):
super().__init__()
if with_time_emb:
time_dim = inner_channel
self.time_mlp = nn.Sequential(
TimeEmbedding(inner_channel),
nn.Linear(inner_channel, inner_channel * 4),
Swish(),
nn.Linear(inner_channel * 4, inner_channel)
)
else:
time_dim = None
self.time_mlp = None
num_mults = len(channel_mults)
pre_channel = inner_channel
feat_channels = [pre_channel]
now_res = image_size
downs = [nn.Conv2d(in_channel, inner_channel,
kernel_size=3, padding=1)]
for ind in range(num_mults):
is_last = (ind == num_mults - 1)
use_attn = (now_res in attn_res)
channel_mult = inner_channel * channel_mults[ind]
for _ in range(0, res_blocks):
downs.append(ResnetBlocWithAttn(
pre_channel, channel_mult, time_emb_dim=time_dim, norm_groups=norm_groups, dropout=dropout, with_attn=use_attn))
feat_channels.append(channel_mult)
pre_channel = channel_mult
if not is_last:
downs.append(Downsample(pre_channel))
feat_channels.append(pre_channel)
now_res = now_res//2
self.downs = nn.ModuleList(downs)
self.mid = nn.ModuleList([
ResnetBlocWithAttn(pre_channel, pre_channel, time_emb_dim=time_dim, norm_groups=norm_groups,
dropout=dropout, with_attn=True),
ResnetBlocWithAttn(pre_channel, pre_channel, time_emb_dim=time_dim, norm_groups=norm_groups,
dropout=dropout, with_attn=False)
])
ups = []
for ind in reversed(range(num_mults)):
is_last = (ind < 1)
use_attn = (now_res in attn_res)
channel_mult = inner_channel * channel_mults[ind]
for _ in range(0, res_blocks+1):
ups.append(ResnetBlocWithAttn(
pre_channel+feat_channels.pop(), channel_mult, time_emb_dim=time_dim, dropout=dropout, norm_groups=norm_groups, with_attn=use_attn))
pre_channel = channel_mult
if not is_last:
ups.append(Upsample(pre_channel))
now_res = now_res*2
self.ups = nn.ModuleList(ups)
self.final_conv = Block(pre_channel, default(out_channel, in_channel), groups=norm_groups)
def forward(self, x, time):
t = self.time_mlp(time) if exists(self.time_mlp) else None
feats = []
for layer in self.downs:
if isinstance(layer, ResnetBlocWithAttn):
x = layer(x, t)
else:
x = layer(x)
feats.append(x)
for layer in self.mid:
if isinstance(layer, ResnetBlocWithAttn):
x = layer(x, t)
else:
x = layer(x)
for layer in self.ups:
if isinstance(layer, ResnetBlocWithAttn):
x = layer(torch.cat((x, feats.pop()), dim=1), t)
else:
x = layer(x)
return self.final_conv(x)