-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathHStrain.py
96 lines (77 loc) · 3 KB
/
HStrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
import torch.utils.data as data
import scipy.io as sio
import torch
import os
import cv2
import utils
import random
from imsize import imresize
import h5py
class HSTrainingData(data.Dataset):
def __init__(self, image_dir, n_scale, num_ch=None, augment=None, ch3=False):
self.image_files = [os.path.join(image_dir, x) for x in os.listdir(image_dir)]
self.augment = augment
self.n_scale = n_scale
self.i = num_ch
self.ch3 = ch3
if self.augment:
self.factor = 8
else:
self.factor = 1
def __getitem__(self, index):
file_index = index
aug_num = 0
if self.augment:
file_index = index // self.factor
aug_num = int(index % self.factor)
load_dir = self.image_files[file_index]
# print(load_dir)
data = sio.loadmat(load_dir)
# data = h5py.File(load_dir,'r')
#print(load_dir)
img = np.array(data['block'][...], dtype=np.float32) # chikusei paviac
# img = np.array(data['gt'][...], dtype=np.float32) # cave
# img = np.array(data['ref'][...]), #harvard
# img = img[0] # 这行是一起的
# print(img.shape)
# Chikusei 归一化
'''
DATAMAX = 15133
DATAMIN = 0
img = (img - DATAMIN)/(DATAMAX - DATAMIN)
'''
# Chikusei 归一化
img = (img - img.min()) / (img.max() - img.min())
height, width, channels = img.shape
gt_size = 32 * self.n_scale
row = random.randint(0, height-gt_size)
column = random.randint(0, width-gt_size)
gt = img[row:row+gt_size, column:column+gt_size, :]
ms = imresize(gt,output_shape=(32,32))
#sprint(ms.shape)
lms = imresize(ms,output_shape=(gt_size,gt_size))
ms, lms, gt = utils.data_augmentation(ms, mode=aug_num), utils.data_augmentation(lms, mode=aug_num), \
utils.data_augmentation(gt, mode=aug_num)
ms = torch.from_numpy(ms.copy()).permute(2, 0, 1)
lms = torch.from_numpy(lms.copy()).permute(2, 0, 1)
gt = torch.from_numpy(gt.copy()).permute(2, 0, 1)
ms = ms.type(torch.FloatTensor)
lms = lms.type(torch.FloatTensor)
gt = gt.type(torch.FloatTensor)
ms = torch.clamp(ms,0,1)
lms = torch.clamp(lms,0,1)
if self.ch3:
# 选取三通道进行测试。
gt = gt[[self.i, self.i + 34, self.i + 68],:,:]
ms = ms[[self.i, self.i + 34, self.i + 68],:,:]
lms = lms[[self.i, self.i + 34, self.i + 68],:,:]
# return ms, lms, gt
return {'HR': gt, 'SR': lms, 'LR': ms}
def __len__(self):
return len(self.image_files)*self.factor
# dataset = HSTrainingData(image_dir= '../PaviaC_mat/', n_scale = 4, num_ch=1,ch3=True)
# print(dataset.image_files)
# print(len(dataset))
# for i in dataset:
# print(i['HR'].shape,i['LR'].shape,i['SR'].shape)