-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathplot_cd.R
318 lines (282 loc) · 9.6 KB
/
plot_cd.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
library(tidyverse)
library(tweenr)
library(circlize)
library(migest)
library(animation)
library(magick)
library(grid)
##
## data
##
w1 <- read_csv("./data/wiki_players.csv")
w2 <- read_csv("./data/wiki_colours.csv")
w3 <- read_csv("./data/wiki_comp.csv")
# club_country to nat_team data frame
d1 <- w1 %>%
select(year, nat_team, club_country_harm, contains("alpha3")) %>%
rename(club_country = club_country_harm,
nat_alpha3 = nat_team_alpha3) %>%
mutate(club_country = ifelse(club_alpha3 == "REU", "Reunion", club_country)) %>%
replace_na(list(club_country = "No Club")) %>%
group_by(club_country, nat_team, year, club_alpha3, nat_alpha3) %>%
summarise(n = n()) %>%
ungroup() %>%
left_join(w2, by = c("nat_alpha3" = "nat_team_alpha3")) %>%
select(-url_team) %>%
arrange(year)
n0 <- d1 %>%
select(contains("nat_"), contains("kit")) %>%
distinct() %>%
mutate(nat_team = factor(x = nat_team, levels = unique(d1$nat_team))) %>%
arrange(nat_team) %>%
mutate(nat_team = as.character(nat_team)) %>%
rename(lab = nat_team,
alpha3 = nat_alpha3)
c0 <- d1 %>%
select(contains("club_")) %>%
distinct() %>%
filter(!(club_country %in% n0$lab)) %>%
mutate(kit_shirt = "transparent",
kit_shorts = "transparent",
kit_socks = "transparent",
club_country = factor(x = club_country, levels = unique(d1$club_country)),
club_country = fct_rev(club_country)) %>%
arrange(club_country) %>%
mutate(club_country = as.character(club_country)) %>%
rename(lab = club_country,
alpha3 = club_alpha3)
d0 <- n0 %>%
bind_rows(c0) %>%
mutate(
label = lab,
# label = str_wrap(string = lab, width = 12)
) %>%
# separate(col = label, into = c("lab1", "lab2"), sep = "\n",
# fill = "right", remove = FALSE) %>%
mutate(
# y = ifelse(test = !is.na(lab2), yes = 1, no = 0.6),
# label = ifelse(test = alpha3 %in% c("DEU", "GB-NIR", "IRL", "CZE"),
# label, lab),
# label = ifelse(label == "Czechoslovakia", "Czecho-\nslovakia", label),
# label = ifelse(label == "Bosnia and Herzegovina", "Bosnia and Herz.", label),
# label = ifelse(label == "Switzerland", "Switzer-\nland", label),
# gap = ifelse(kit_shirt == "transparent", 2.5, 1.5),
gap = ifelse(lab %in% c0$lab | lab == n0$lab[nrow(n0)], 2.5, 1.5),
label2018 = label,
# label2018 = ifelse(lab2018 == "Bosnia and Herzegovina", "Bosnia", label2018)
)
z <- expand_grid(year = unique(sort(d1$year)),
nat_team = d0$lab,
club_country = d0$lab) %>%
mutate(n = ifelse(nat_team == club_country, 0.01, 0),
kit_shirt = "transparent",
kit_shorts = "transparent",
kit_socks = "transparent",
kit_away = "transparent")
d2 <- d1 %>%
bind_rows(z) %>%
group_by(year, nat_team, club_country) %>%
filter(n == max(n)) %>%
ungroup() %>%
arrange(year) %>%
select(-contains("alpha3"))
m0 <- d2 %>%
# mutate(n = ifelse(n == 0.1, 0, n)) %>%
group_by(year) %>%
complete(club_country, nat_team, fill = list(n = 0)) %>%
sum_turnover(orig_col = "club_country", dest_col = "nat_team",
flow_col = "n", drop_diagonal = FALSE,
include_net = FALSE) %>%
mutate(tot = tot_in + tot_out) %>%
group_by(region) %>%
filter(tot == max(tot)) %>%
ungroup() %>%
select(-year) %>%
distinct() %>%
select(region, tot) %>%
deframe()
# tween
d3 <- d2 %>%
mutate(corridor = paste(club_country, nat_team, sep = " -> ")) %>%
select(-club_country, -nat_team, -contains("kit"), kit_shirt) %>%
mutate(ease = "linear") %>%
tween_elements(time = "year", group = "corridor", ease = "ease",
nframes = diff(range(d1$year)) * 4) %>%
as_tibble() %>%
separate(col = .group, into = c("club_country", "nat_team"), sep = " -> ") %>%
relocate(club_country, nat_team, n)
# fifa 2020 teams
fifa2018 <- w1 %>%
filter(year == 2018) %>%
pull(squad) %>%
unique()
# pdf(file = "./plot/fifa2018.pdf", height = 7, width = 7, useDingbats = FALSE)
pdf(file = "./plot/fifa.pdf", height = 7, width = 7, useDingbats = FALSE)
for(f in unique(d3$.frame)){
# for(f in max(d3$.frame)){
# for(f in min(d3$.frame)){
d4 <- d3 %>%
filter(.frame == f)
# d4 <- d4 %>%
# filter(kit_shirt != "#FEFFFE00")
if(!d4$year[1] %in% w3$year)
next()
par(mar = rep(0, 4), bg = "grey40", lheight = 0.8)
circos.clear()
circos.par(track.margin=c(0.01, -0.01), points.overflow.warning = FALSE,
gap.degree = d0$gap,
# gap.degree = 1.5,
start.degree = 90)
# plot the chord diagram
chordDiagram(
x = select(d4, nat_team, club_country, n),
col = pull(d4, kit_shirt),
order = d0 %>%
filter(lab %in% unique(c(d4$nat_team, d4$club_country))) %>%
pull(lab),
# fifa2018 order
# order = c(fifa2018, d0$lab[!d0$lab %in% fifa2018]),
grid.col = d0 %>%
select(lab, kit_shirt) %>%
deframe(),
transparency = 0.1,
directional = -1, direction.type = c("diffHeight", "arrows"),
link.arr.type = "big.arrow", diffHeight = -0.02,
link.sort = TRUE,
link.largest.ontop = TRUE,
h.ratio = 0.6,
xmax = m0,
annotationTrack = "grid",
annotationTrackHeight = 0.02,
preAllocateTracks = list(track.height = 0.),
)
circos.trackPlotRegion(
track.index = 1,
bg.border = NA,
panel.fun = function(x, y) {
s <- get.cell.meta.data("sector.index")
dd <- filter(d0, lab == s)
xx <- get.cell.meta.data("xlim") %>%
mean()
theta <- circlize(mean(xx), 1.3)[1, 1] %% 360
ff <- ifelse(theta < 90 || theta > 270,
"clockwise", "reverse.clockwise")
aa <- c(1, 0.5)
if(theta < 90 || theta > 270)
aa <- c(0, 0.5)
flag_disp <- TRUE
if(is.na(dd$alpha3))
flag_disp <- FALSE
if(dd$alpha3 %in% c0$alpha3)
flag_disp <- FALSE
# fifa2018 drop flags for past teams
# if(!dd$lab %in% fifa2018)
# flag_disp <- FALSE
if(flag_disp){
flag_rot <- ifelse(theta < 90 || theta > 270, -90, 90)
flag <- dd$alpha3 %>%
paste0("./flag/", . ,".png") %>%
image_read() %>%
image_rotate(degrees = flag_rot)
circos.raster(image = flag, x = mean(xx), y = 0.2,
width = "0.3cm", facing = "inside")
}
circos.text(x = xx, y = ifelse(flag_disp, 0.38, 0.1),
# labels = dd$label2020,
labels = dd$label,
facing = ff, adj = aa,
col = "white", cex = 0.8)
}
)
y <- d4$year[1]
if(y %in% w3$year){
logo <- w3 %>%
filter(year == y) %>%
slice(1) %>%
pull(url_comp_logo) %>%
paste0("https:", .) %>%
image_read()
w <- h <- NULL
if(y != 2000)
w <- 0.14
if(y == 2000)
h <- 0.18
grid.raster(image = logo, x = 0.99, y = 0.99,
width = w, height = h,
hjust = 1, vjust = 1)
}
if(y %% 4 != 0)
y <- NULL
text(-1.1,1.02, paste0("FIFA World Cup Squads ", y), col="white", cex=1.4, pos=4)
text(-1.1,0.96,"Leagues to national teams", col="white", cex=0.75, pos=4)
text(-1.1,0.91,"by @guyabelguyabel", col="white", cex=0.75, pos=4)
text(-1.1,-0.72,"Details:", col="white", cex=0.7, pos=4)
yy = -0.76
text(-1.1,yy-0.03*0, "Colours based on the", col="white", cex=0.5, pos=4)
text(-1.1,yy-0.03*1, "shirt of each national", col="white", cex=0.5, pos=4)
text(-1.1,yy-0.03*2, "team. Chords represent", col="white", cex=0.5, pos=4)
text(-1.1,yy-0.03*3, "connections between the", col="white", cex=0.5, pos=4)
text(-1.1,yy-0.03*4, "country of a player’s club (at ", col="white", cex=0.5, pos=4)
text(-1.1,yy-0.03*5, "the chord base) and their national", col="white", cex=0.5, pos=4)
text(-1.1,yy-0.03*6, "team (at the arrow head). Chord thickness", col="white", cex=0.5, pos=4)
text(-1.1,yy-0.03*7, "represents the number of players per club", col="white", cex=0.5, pos=4)
text(-1.1,yy-0.03*8, "country-national team combination. Created", col="white", cex=0.5, pos=4)
text(-1.1,yy-0.03*9, "in R. Data scraped from squad lists on Wikipedia:", col="white", cex=0.5, pos=4)
text(-1.1,yy-0.03*10, "https://en.wikipedia.org/wiki/FIFA_World_Cup", col="white", cex=0.5, pos=4)
if(f %% 10 == 0)
message(f)
}
dev.off()
file.show("./plot/fifa.pdf")
# file.show("./plot/fifa2018.pdf")
##
## animation
##
# set up frames for animation, pauses on first and last plot
f0 <- d3 %>%
select(.frame, year) %>%
distinct() %>%
mutate(page = 1:n(),
comp = year %% 4 == 0,
comp_last = year == max(year)) %>%
# rowwise() %>%
group_by(page) %>%
mutate(page_rep = paste(rep(page, 20), collapse = ","),
page_last = paste(rep(page, 50), collapse = ",")) %>%
ungroup() %>%
mutate(f = case_when(
comp_last ~ page_last,
comp ~ page_rep,
TRUE ~ as.character(page)
))
ff <- f0 %>%
pull(f) %>%
paste0(collapse = ",") %>%
str_split(pattern = ",") %>%
.[[1]] %>%
as.numeric()
# bring in image files from each page of PDF
pp <- image_read_pdf("./plot/fifa.pdf")
# image_info(pp)
# create animated version of images in the PDF
saveVideo(expr = {
for(j in ff){
img1 <- pp[j]
par(mar = rep(0,4))
plot(as.raster(img1))
}},
ani.width = 2100, ani.height = 2100, n = length(ff),
loop = TRUE, interval = 1/10,
ffmpeg = "C:/ffmpeg/bin/ffmpeg.exe",
video.name = "./plot/fifa.mp4"
)
file.show("./plot/fifa.mp4")
##
## placeholder image
##
# p <- pp[length(pp)]
p <- image_read_pdf(path = "plot/fifa2018.pdf")
png(filename = "./plot/fifa2018.png", width = 2100, height = 2100)
par(mar = rep(0,4))
plot(as.raster(p))
dev.off()