-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdataloader.lua
146 lines (131 loc) · 4.45 KB
/
dataloader.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
--[[
File Name : dataloader.lua
Created By : Chen Guanying ([email protected])
Creation Date : [2018-03-03 20:02]
Last Modified : [2018-03-03 20:02]
Description :
--]]
-- Copyright (c) 2016, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- Multi-threaded data loader
--
local Threads = require 'threads'
Threads.serialization('threads.sharedserialize')
local M = {}
local DataLoader = torch.class('TOM.DataLoader', M)
function DataLoader.create(opt)
local loaders = {}
local datasets
datasets = require 'datasets/TOMDataset'
for i, split in ipairs{'train', 'val'} do
local dataset = datasets(opt, split)
loaders[i] = M.DataLoader(dataset, opt, split)
end
return table.unpack(loaders)
end
function DataLoader:__init(dataset, opt, split)
local manualSeed = opt.manualSeed
local function init()
require('datasets/' .. opt.dataset)
end
local function main(idx)
if manualSeed ~= 0 then
torch.manualSeed(manualSeed + idx)
end
torch.setnumthreads(1)
_G.dataset = dataset
_G.preprocess = dataset:preprocess()
return dataset:size()
end
local threads, sizes = Threads(opt.nThreads, init, main)
self.threads = threads
self.__size = sizes[1][1]
self.batchSize = math.floor(opt.batchSize)
self.in_trimap = opt.in_trimap
self.split = split
end
function DataLoader:batch_size()
return math.ceil(self.__size / self.batchSize)
end
function DataLoader:size()
return self.__size
end
function DataLoader:run(split, maxNumber)
local split = split or 'train'
local threads = self.threads
local in_trimap = self.in_trimap
local fullSize, batchSize = self.__size, self.batchSize
local size = (maxNumber ~= nil and maxNumber > 0) and math.min(maxNumber, fullSize) or fullSize
local perm = (split == 'val') and torch.range(1, size) or torch.randperm(size)
print(string.format('[Dataloader run] split: %s, size: %d/%d ', split, size, fullSize))
local idx, sample = 1, nil
local function enqueue()
while idx <= size and threads:acceptsjob() do
local indices = perm:narrow(1, idx, math.min(batchSize, size - idx + 1))
threads:addjob(
function(indices)
local sz = indices:size(1)
local batch, masks, rhos, flows, trimaps, imageSize
for i, idx in ipairs(indices:totable()) do
local sample = _G.dataset:get(idx)
local input = sample.input
if not batch then
imageSize = input:size():totable()
batch = torch.FloatTensor(sz, table.unpack(imageSize))
masks = torch.FloatTensor(sz, input:size()[2], input:size()[3])
rhos = torch.FloatTensor(sz, input:size()[2], input:size()[3])
flows = torch.FloatTensor(sz, 3, input:size()[2], input:size()[3])
if in_trimap then
trimaps = torch.FloatTensor(sz, input:size()[2], input:size()[3])
end
end
batch[i]:copy(input)
masks[i]:copy(sample.mask)
rhos[i]:copy(sample.rho)
flows[i]:copy(sample.flow)
if in_trimap then
trimaps[i]:copy(sample.trimap)
end
end
collectgarbage()
local batch_sample = {
input = batch,
masks = masks,
rhos = rhos,
flows = flows
}
if in_trimap then
batch_sample.trimaps = trimaps
end
return batch_sample
end,
function(_sample_)
sample = _sample_
end,
indices
)
idx = idx + batchSize
end
end
local n = 0
local function loop()
enqueue()
if not threads:hasjob() then
return nil
end
threads:dojob()
if threads:haserror() then
threads:synchronize()
end
enqueue()
n = n + 1
return n, sample
end
return loop
end
return M.DataLoader