-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmain.py
33 lines (24 loc) · 1.05 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import torch
from options import train_opts
from utils import logger, recorders, train_utils, test_utils
from datasets import custom_dataloader
from models import build_model
args = train_opts.TrainOpts().parse()
log = logger.Logger(args)
def main(args):
model = build_model(args, log)
recorder = recorders.Records(records=None)
train_loader, val_loader = custom_dataloader(args, log)
for epoch in range(args.start_epoch, args.epochs+1):
model.update_learning_rate()
recorder.insert_record('train', 'lr', epoch, model.get_learning_rate())
train_utils.train(args, log, train_loader, model, epoch, recorder)
if epoch == 1 or (epoch % args.save_intv == 0):
model.save_checkpoint(epoch, recorder.records)
log.plot_all_curves(recorder, 'train')
if epoch % args.val_intv == 0:
test_utils.test(args, log, 'val', val_loader, model, epoch, recorder)
log.plot_all_curves(recorder, 'val')
if __name__ == '__main__':
torch.manual_seed(args.seed)
main(args)