-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
executable file
·208 lines (175 loc) · 6.83 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
import numpy as np
from sklearn.metrics import (
accuracy_score,
precision_recall_fscore_support,
classification_report,
matthews_corrcoef,
)
def callback_get_label(dataset, idx):
if dataset.data[idx]["n_bubbles"] > 0:
return 1
else:
return 0
def get_best_span(
span_start_logits: torch.Tensor, span_end_logits: torch.Tensor
) -> torch.Tensor:
"""
This acts the same as the static method ``BidirectionalAttentionFlow.get_best_span()``
in ``allennlp/models/reading_comprehension/bidaf.py``. We keep it here so that users can
directly import this function without the class.
We call the inputs "logits" - they could either be unnormalized logits or normalized log
probabilities. A log_softmax operation is a constant shifting of the entire logit
vector, so taking an argmax over either one gives the same result.
From: https://github.com/allenai/allennlp-models/blob/f233052df9feb03f636007dd25c0a3b8d4b546d6/allennlp_models/rc/models/utils.py#L6
"""
if span_start_logits.dim() != 2 or span_end_logits.dim() != 2:
raise ValueError("Input shapes must be (batch_size, passage_length)")
batch_size, passage_length = span_start_logits.size()
device = span_start_logits.device
# (batch_size, passage_length, passage_length)
span_log_probs = span_start_logits.unsqueeze(
2) + span_end_logits.unsqueeze(1)
# Only the upper triangle of the span matrix is valid; the lower triangle has entries where
# the span ends before it starts.
span_log_mask = torch.triu(
torch.ones((passage_length, passage_length), device=device)
).log()
valid_span_log_probs = span_log_probs + span_log_mask
# Here we take the span matrix and flatten it, then find the best span using argmax. We
# can recover the start and end indices from this flattened list using simple modular
# arithmetic.
# (batch_size, passage_length * passage_length)
_, best_spans = torch.topk(valid_span_log_probs.view(batch_size, -1), 8)
span_start_indices = torch.floor_divide(best_spans, passage_length)
span_end_indices = best_spans % passage_length
return torch.stack([span_start_indices, span_end_indices], dim=-1)
def do_nms(span_idxs, overlapThresh=2):
"""
span_idx = (k, 2)
"""
# span_idxs = span_idxs.numpy()
pick = []
x = span_idxs[:, 0]
y = span_idxs[:, 1]
k = span_idxs.shape[0]
idx = np.arange(0, k)
idx = idx[::-1]
area = y - x + 1
while len(idx) > 0:
last = len(idx) - 1
i = idx[last]
pick.append(i)
xx = np.minimum(x[i], x[idx[:last]])
yy = np.maximum(y[i], y[idx[:last]])
span_i = np.maximum(0, yy - xx + 1)
overlap = span_i / area[idx[:last]]
idx = np.delete(
idx, np.concatenate(([last], np.where(overlap > overlapThresh)[0]))
)
return span_idxs[pick].astype(int)
def summarize_results(
true_bubble_list,
start_idx_pred_list,
end_idx_pred_list,
num_bubble_true_list,
num_bubble_pred_list,
return_pred_bubble=False,
):
true_bubble_list = torch.cat(
true_bubble_list, dim=0).cpu() # shape = (N, num_days)
pstart_idx_pred_list = torch.log(
torch.cat(start_idx_pred_list, dim=0).detach().cpu()
)
pend_idx_pred_list = torch.log(
torch.cat(end_idx_pred_list, dim=0).detach().cpu())
num_bubble_true_list = torch.cat(
num_bubble_true_list, dim=0
).cpu() # shape = (bs, max_bubbles)
num_bubble_pred_list = torch.cat(
num_bubble_pred_list, dim=0).detach().cpu()
num_bubble_pred_list = torch.argmax(num_bubble_pred_list, dim=-1)
best_span = (
get_best_span(pstart_idx_pred_list,
pend_idx_pred_list).int().cpu().numpy()
)
bs, n_days = pstart_idx_pred_list.shape
span_pred_list = []
for i in range(bs):
# print(i)
n_spans = num_bubble_pred_list[i].item()
predicted = torch.zeros(n_days, dtype=int)
if n_spans != 0:
current_idx = do_nms(best_span[i])
# print(current_idx)
# print(n_spans)
if current_idx.shape[0] < n_spans:
current_idx = best_span[i]
# print(current_best_span.shape)
# current_idx = current_best_span[:n_spans]
mask = []
# print(n_spans)
# print(current_idx)
for j in range(n_spans):
mask += list(np.arange(current_idx[j, 0], current_idx[j, 1]+1))
# print(mask)
predicted[mask] = 1
span_pred_list.append(predicted)
# print(span_pred_list)
span_pred_list = torch.stack(span_pred_list, dim=0)
em = get_EM(span_pred_list, true_bubble_list)
em_bubble_only = get_EM_bubble_only(span_pred_list, true_bubble_list, num_bubble_true_list)
acc_nbubble = get_accuracy(num_bubble_pred_list, num_bubble_true_list)
precision_nbubble, recall_nbubble, f1_nbubble, _ = get_f1(
num_bubble_pred_list, num_bubble_true_list
)
acc_span = get_accuracy(span_pred_list, true_bubble_list)
precision_span, recall_span, f1_span, _ = get_f1(
span_pred_list, true_bubble_list)
span_pred_list = span_pred_list.view(-1).numpy()
true_bubble_list = true_bubble_list.view(-1).numpy()
# print(classification_report(true_bubble_list, span_pred_list))
mcc = matthews_corrcoef(true_bubble_list, span_pred_list)
return {
"EM": em,
"EM_only_bubble": em_bubble_only,
"acc_span": acc_span,
"acc_bubble": acc_nbubble,
"precision_span": precision_span,
"recall_span": recall_span,
"f1_span": f1_span,
"precision_nbubble": precision_nbubble,
"recall_nbubble": recall_nbubble,
"f1_nbubble": f1_nbubble,
"MCC": mcc,
"true_bubble_list": true_bubble_list.reshape(bs, n_days),
"pred_bubble_list": span_pred_list.reshape(bs, n_days),
"num_bubble_pred_list": num_bubble_pred_list,
"num_bubble_true_list": num_bubble_true_list
}
def get_accuracy(pred, true):
"""
pred: bs, label
true: bs, label
"""
pred = pred.view(-1)
true = true.view(-1)
out = torch.mean((pred == true).float())
return out
def get_f1(pred, true):
pred = pred.view(-1).numpy()
true = true.view(-1).numpy()
return precision_recall_fscore_support(true, pred, average="macro")
def get_EM(pred, true):
bs, _ = pred.shape
out = (pred == true).int()
return torch.true_divide(torch.sum(torch.prod(out, 1)), bs)
def get_EM_bubble_only(pred, true, n_bubbles):
indices = ((n_bubbles > 0).nonzero(as_tuple=True)[0]).tolist()
pred = pred[indices]
true = true[indices]
out = (pred == true).int()
if len(indices) !=0:
return torch.true_divide(torch.sum(torch.prod(out, 1)), len(indices)).item()
else:
return 0