-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate_detexd_roberta.py
35 lines (25 loc) · 1.37 KB
/
evaluate_detexd_roberta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from transformers import pipeline
from datasets import load_dataset
from sklearn.metrics import precision_recall_fscore_support
from tqdm.auto import tqdm
from transformers.pipelines.pt_utils import KeyDataset
BINARY_THRESHOLD = 0.72496545
def predict_binary_scores(classifier, texts):
# get multiclass probability scores
all_scores = tqdm(classifier(texts, top_k=None, truncation=True), total=len(texts))
# convert to a single score by summing the probability scores
# for the higher-index classes
return [sum(score['score']
for score in scores
if score['label'] in ('LABEL_3', 'LABEL_4', 'LABEL_5'))
for scores in all_scores]
def predict_delicate(classifier, texts, threshold=BINARY_THRESHOLD):
return [result > threshold for result in predict_binary_scores(classifier, texts)]
if __name__ == '__main__':
dataset = load_dataset("grammarly/detexd-benchmark", split='test')
classifier = pipeline("text-classification", model="grammarly/detexd-roberta-base", device=0)
predictions = predict_delicate(classifier, KeyDataset(dataset, 'text'))
precision, recall, f_score, _ = precision_recall_fscore_support(y_true=dataset['label'], y_pred=predictions, average='binary')
print(f'precision = {precision:.1%}') # 81.4%
print(f'recall = {recall:.1%}') # 78.3%
print(f'f_score = {f_score:.1%}') # 79.8%