-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtransform_graph.py
82 lines (63 loc) · 2.15 KB
/
transform_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright 2024 Grabtaxi Holdings Pte Ltd (GRAB), All rights reserved.
# Use of this source code is governed by an MIT-style license that can be found in the LICENSE file
import torch
from torch_geometric.nn.conv import MessagePassing
from torch import ModuleDict, Tensor
import torch.nn as nn
from tqdm import tqdm
import time
import os
from torch_geometric.nn.conv import HeteroConv, GCNConv, SAGEConv, GATConv
from torch_geometric.datasets.fake import FakeHeteroDataset
from torch_sparse import SparseTensor
from torch_geometric.loader import DataLoader, NeighborLoader
import torch_geometric.transforms as T
from torch_geometric.data import HeteroData
from torch_geometric.data.hetero_data import to_homogeneous_edge_index
from utils.hetero2homogen import to_homogeneous
# name = "telecom-smaller"
# name = "telecom-large"
# name = "reddit"
# name = "gowalla"
name = "brightkite"
nvar_pca = None
print(name)
storage = torch.load(f"storage/{name}-anomaly.pt")
graph = storage["graph_anomaly_list"][0]
# node_groups = [["user"], ["package"], ["cell"], ["app"]]
# edge_groups = [
# [("user", "buy", "package")],
# [("user", "live", "cell")],
# [("user", "use", "app")],
# ]
# node_groups = [["user0"], ["user1"], ["sub0"], ["sub1"]]
# edge_groups = [
# [("user0", "submission", "sub0")],
# [("user1", "submission", "sub0")],
# [("user0", "submission", "sub1")],
# [("user1", "submission", "sub1")],
# ]
node_groups = [["user"], ["loc0"], ["loc1"], ["loc2"], ["loc3"]]
edge_groups = [
[("user", "checkin", "loc0")],
[("user", "checkin", "loc1")],
[("user", "checkin", "loc2")],
[("user", "checkin", "loc3")],
]
new_storage = {"args": storage["args"]}
new_graph = to_homogeneous(
graph,
node_groups,
edge_groups,
use_pca=True,
pca_node_dim=nvar_pca,
pca_edge_dim=nvar_pca,
)
new_storage["graph"] = new_graph
graph_anomaly_list = []
for i, gr in enumerate(storage["graph_anomaly_list"]):
print(i)
new_gr = to_homogeneous(gr, node_groups, edge_groups)
graph_anomaly_list.append(new_gr)
new_storage["graph_anomaly_list"] = graph_anomaly_list
torch.save(new_storage, f"storage/{name}-anomaly-homogeneous.pt")