-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_telecom_large_att.py
463 lines (390 loc) · 14.1 KB
/
train_telecom_large_att.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# Copyright 2024 Grabtaxi Holdings Pte Ltd (GRAB), All rights reserved.
# Use of this source code is governed by an MIT-style license that can be found in the LICENSE file
import torch
from torch_geometric.nn.conv import MessagePassing
from torch import ModuleDict, Tensor
import torch.nn as nn
from tqdm import tqdm
import time
import os
import pandas as pd
import numpy as np
import argparse
import copy
from torch_geometric.nn.conv import HeteroConv, GCNConv, SAGEConv, GATConv
from torch_geometric.datasets.fake import FakeHeteroDataset
from torch_sparse import SparseTensor
from torch_geometric.loader import DataLoader, NeighborLoader
import torch_geometric.transforms as T
from torch_geometric.data import HeteroData
from models.dataloader import MultiNeighborLoader
from models.net_att import HeagNetAtt
from models.sampler import EdgePredictionSampler, annotate_edge_pred, annotate_target
from models.loss import (
batch_reconstruction_loss,
edge_prediction_metric,
inference_reconstruction_loss,
reconstruction_loss,
anomaly_score,
feature_anomaly_score,
top_k_features,
compute_evaluation_metrics,
)
from utils.combine import combine_rev_edges
from utils.seed import seed_all
from utils.standardize import standardize_features
# %% args
parser = argparse.ArgumentParser(description="HeagNet")
parser.add_argument("--id", type=int, default=0, help="id to the data")
parser.add_argument("--lr", type=float, default=1e-4, help="learning rate")
parser.add_argument("--n-epoch", type=int, default=1, help="number of epoch")
parser.add_argument(
"--scheduler-milestones",
nargs="+",
type=int,
default=[1, 2],
help="number of epoch",
)
args1 = vars(parser.parse_args())
args2 = {
"name": f"telecom-large",
"n_layers_encoder": 2,
"n_layers_decoder": 2,
"n_layers_mlp": 2,
"sampling-n-hops": 2,
"gamma": 0.2,
"x_loss_weight": 1.0,
"xe_loss_weight": 1.0,
"structure_loss_weight": 0.2,
"edge_pred_mult": 3.0,
"min_num_edge": 2,
"num_workers": 8,
"clip_max": 100.0,
"seed": 0,
"progress_bar": True,
"iter_check": 1,
}
args = {**args1, **args2}
seed_all(args["seed"])
# %% dataset
result_dir = "results/"
# load datasets
storage = torch.load("storage/telecom-large-anomaly.pt")
dataset = storage["graph_anomaly_list"][args["id"]]
del storage
# transform
# remove isolated nodes
transform = T.RemoveIsolatedNodes()
dataset = transform(dataset)
# add ids to graph
for nt in dataset.node_types:
dataset[nt]["df_nid"] = torch.arange(dataset[nt].num_nodes)
for et in dataset.edge_types:
dataset[et]["df_eid"] = torch.arange(dataset[et].num_edges)
# get metadata
metadata = dataset.metadata()
ntypes, etypes = metadata
# standardize
dataset = standardize_features(dataset)
print(dataset)
print("\nAnomalies -->")
for nt in ntypes:
print(
f"{nt}: {dataset[nt].y.sum()}/{dataset[nt].y.shape[0]} ({dataset[nt].y.sum()/dataset[nt].y.shape[0]})"
)
for et in etypes:
print(
f"{et}: {dataset[et].ye.sum()}/{dataset[et].ye.shape[0]} ({dataset[et].ye.sum()/dataset[et].ye.shape[0]})"
)
print("\n")
# model
in_channels_node = {key: dataset[key].x.shape[1] for key in ntypes}
in_channels_edge = {key: dataset[key].edge_attr.shape[1] for key in etypes}
hidden_channels_node = {key: 32 for key in ntypes}
hidden_channels_edge = {key: 32 for key in etypes}
latent_channels_node = {key: 64 for key in ntypes}
edge_pred_latent = {key: 64 for key in etypes}
print("model")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = HeagNetAtt(
metadata,
in_channels_node,
in_channels_edge,
n_layers_encoder=args["n_layers_encoder"],
n_layers_decoder=args["n_layers_decoder"],
n_layers_mlp=args["n_layers_mlp"],
bidirectional=True,
)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args["lr"])
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=args["scheduler_milestones"], gamma=args["gamma"]
)
# transform graph for sampling
transform = T.ToUndirected()
dataset_sampling = transform(copy.copy(dataset))
# neighbor sampling
num_neighbors_dict = {
("user", "buy", "package"): 10,
("user", "live", "cell"): 5,
("user", "use", "app"): 5,
("package", "rev_buy", "user"): 5,
("cell", "rev_live", "user"): 5,
("app", "rev_use", "user"): 5,
}
# loader & sampler
n_step = args["sampling-n-hops"]
dataloader = MultiNeighborLoader(
dataset_sampling,
num_neighbors={
key: [num_neighbors_dict[key]] * n_step for key in dataset_sampling.edge_types
},
input_nodes=["user", "app", "cell", "package"],
batch_size=[1024, 256, 512, 256],
# batch_size=[512, 128, 256, 128],
# batch_size=[256, 256, 256, 256],
# batch_size=[32, 32, 32, 32],
# input_repeat=[1.0, 1.0, 1.0, 1.0],
# input_repeat=[0.8, 0.8, 0.4, 0.8],
input_repeat=[0.04, 0.8, 0.02, 0.8],
drop_last=True,
)
node_score_agg = {
"user": "max",
"package": "max",
"cell": "max",
"app": "max",
}
# print(dataset_sampling)
def train(epoch):
model.train()
n_batch = len(dataloader)
if args["progress_bar"]:
pbar = tqdm(total=n_batch, leave=False)
pbar.set_description(f"#{epoch:3d}")
else:
start = time.time()
for i, batch in enumerate(dataloader):
batch = combine_rev_edges(batch)
batch = batch.to(device)
x_dict = {
key: batch[key].x
for key in batch.metadata()[0]
if batch[key].x.shape[0] > 0
}
spt_dict = {
key: SparseTensor.from_edge_index(
batch[key].edge_index,
sparse_sizes=(batch[key[0]].num_nodes, batch[key[2]].num_nodes),
edge_attr=batch[key].edge_attr,
)
for key in batch.metadata()[1]
if batch[key].edge_index.shape[1] >= args["min_num_edge"]
}
adj_dict = {k: spt_dict[k].set_value(None) for k in spt_dict.keys()}
xe_dict = {k: spt_dict[k].storage.value() for k in spt_dict.keys()}
edge_pred_sampler_dict = {}
edge_pred_samples_dict = {}
for et, adj in adj_dict.items():
if adj.sparse_sizes()[0] > 0 and adj.sparse_sizes()[1] > 0:
edge_pred_sampler = EdgePredictionSampler(
adj, mult=args["edge_pred_mult"]
)
edge_pred_samples = edge_pred_sampler.sample()
edge_pred_sampler_dict[et] = edge_pred_sampler
edge_pred_samples_dict[et] = edge_pred_samples
# annotate
# batch = annotate_target(batch)
# edge_pred_target_mask_dict = annotate_edge_pred(edge_pred_samples_dict, batch)
# annotate
for nt in batch.node_types:
batch[nt].target_node = torch.ones(
batch[nt].num_nodes, dtype=torch.bool, device=batch[nt].x.device
)
for et in batch.edge_types:
batch[et].target_edge = torch.ones(
batch[et].num_edges,
dtype=torch.bool,
device=batch[et].edge_index.device,
)
edge_pred_target_mask_dict = {}
for et, adj in adj_dict.items():
edge_pred_target_mask_dict[et] = torch.ones(
edge_pred_samples_dict[et].nnz(), dtype=torch.bool
)
# forward
optimizer.zero_grad()
out = model(x_dict, xe_dict, adj_dict, edge_pred_samples_dict)
# loss
loss, loss_component = batch_reconstruction_loss(
batch,
out,
edge_pred_samples_dict,
edge_pred_target_mask_dict,
x_loss_weight=args["x_loss_weight"],
xe_loss_weight=args["xe_loss_weight"],
structure_loss_weight=args["structure_loss_weight"],
)
epred_metric = edge_prediction_metric(
edge_pred_samples_dict, edge_pred_target_mask_dict, out["eprob_dict"]
)
# backward
loss.backward()
optimizer.step()
if args["progress_bar"]:
pbar.update(1)
pbar.set_postfix(
{
"loss": float(loss),
"l xe": float(loss_component["xe"]),
"ep acc": epred_metric["acc"],
"ep f1": epred_metric["f1"],
}
)
else:
if i % args["k_check"] == 0 and i != 0:
elapsed = time.time() - start
print(
f"#{epoch:3d} ({i}/{n_batch}), "
+ f"Loss: {loss:.4f} => x: {loss_component['x']:.4f}, "
+ f"xe: {loss_component['xe']:.4f}, "
+ f"e: {loss_component['e']:.4f} -> "
+ f"[acc: {epred_metric['acc']:.3f}, f1: {epred_metric['f1']:.3f} -> "
+ f"prec: {epred_metric['prec']:.3f}, rec: {epred_metric['rec']:.3f}] "
+ f"| {elapsed:.2f}s",
flush=True,
)
start = time.time()
if args["progress_bar"]:
pbar.close()
scheduler.step()
return loss, loss_component, epred_metric
def eval():
model.eval()
tz = time.time()
# inference
node_batch_size = {key: 2**13 if key in ["cell"] else 2**12 for key in ntypes}
mlp_batch_size = {key: 2**13 for key in ntypes}
epred_batch_size = {key: 2**13 for key in etypes}
with torch.no_grad():
# print("forward", flush=True)
out = model.inference(
dataset,
node_batch_size=node_batch_size,
mlp_batch_size=mlp_batch_size,
epred_batch_size=epred_batch_size,
device=device,
edge_pred_mult=args["edge_pred_mult"],
progress_bar=args["progress_bar"],
)
# print("loss", flush=True)
loss, loss_component = inference_reconstruction_loss(
dataset,
out,
xe_loss_weight=args["xe_loss_weight"],
structure_loss_weight=args["structure_loss_weight"],
)
# print("epred", flush=True)
# for et, adj in adj_dict.items():
edge_pred_target_mask_dict = {}
for et, edge_pred_samples in out["edge_pred_samples_dict"].items():
edge_pred_target_mask_dict[et] = torch.ones(
edge_pred_samples.nnz(), dtype=torch.bool
)
epred_metric = edge_prediction_metric(
out["edge_pred_samples_dict"], edge_pred_target_mask_dict, out["eprob_dict"]
)
score = anomaly_score(
dataset,
out,
xe_loss_weight=args["xe_loss_weight"],
structure_loss_weight=args["structure_loss_weight"],
bidirectional=True,
)
eval_metrics = compute_evaluation_metrics(dataset, score, agg=node_score_agg)
eval_metrics_mean = compute_evaluation_metrics(dataset, score, agg="mean")
print(
f"#Eval "
+ f"Loss: {loss:.4f} => x: {loss_component['x']:.4f}, "
+ f"xe: {loss_component['xe']:.4f}, "
+ f"e: {loss_component['e']:.4f} -> "
+ f"[acc: {epred_metric['acc']:.3f}, f1: {epred_metric['f1']:.3f} -> "
+ f"prec: {epred_metric['prec']:.3f}, rec: {epred_metric['rec']:.3f}] ",
flush=True,
)
print(
f" --> Metric: "
+ f"node-auc-roc: {eval_metrics['node_avg_roc_auc']:.4f}, edge-auc-roc: {eval_metrics['edge_avg_roc_auc']:.4f}, "
+ f"node-auc-pr {eval_metrics['node_avg_pr_auc']:.4f}, edge-auc-pr {eval_metrics['edge_avg_pr_auc']:.4f} "
+ f"| {time.time()-tz:.4f}s",
)
print(
f" --> Metric mean: "
+ f"node-auc-roc: {eval_metrics_mean['node_avg_roc_auc']:.4f}, edge-auc-roc: {eval_metrics_mean['edge_avg_roc_auc']:.4f}, "
+ f"node-auc-pr {eval_metrics_mean['node_avg_pr_auc']:.4f}, edge-auc-pr {eval_metrics_mean['edge_avg_pr_auc']:.4f} "
+ f"| {time.time()-tz:.4f}s",
)
## each node / edge
for nt in ntypes:
print(f"{nt} x_loss: {loss_component['x_loss_dict'][nt].mean()}")
for et in etypes:
print(
f"{et}: xe_loss: {loss_component['xe_loss_dict'][et].mean()}, structure_loss: {loss_component['structure_loss_dict'][et].mean()}"
)
print()
## each node / edge
for nt in ntypes:
print(
f"{nt} ({node_score_agg[nt]}): roc auc: {eval_metrics['node_result_dict'][nt]['roc_auc']}, pr auc: {eval_metrics['node_result_dict'][nt]['pr_auc']}"
)
for nt in ntypes:
print(
f"{nt} (mean): roc auc: {eval_metrics_mean['node_result_dict'][nt]['roc_auc']}, pr auc: {eval_metrics_mean['node_result_dict'][nt]['pr_auc']}"
)
for et in etypes:
print(
f"{et}: roc auc: {eval_metrics['edge_result_dict'][et]['roc_auc']}, pr auc: {eval_metrics['edge_result_dict'][et]['pr_auc']}"
)
print()
model_stored = {
"args": args,
"loss": loss,
"loss_component": loss_component,
"epred_metric": epred_metric,
"state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
}
output_stored = {
"args": args,
"metrics": eval_metrics,
"metrics_mean": eval_metrics_mean,
"node_score_agg": node_score_agg,
}
torch.save(
model_stored,
os.path.join(result_dir, f"graphbeanatt-{args['name']}-{args['id']}-model.th"),
)
torch.save(
output_stored,
os.path.join(result_dir, f"graphbeanatt-{args['name']}-{args['id']}-output.th"),
)
eval()
for epoch in range(args["n_epoch"]):
start = time.time()
loss, loss_component, epred_metric = train(epoch)
elapsed = time.time() - start
print(
f"#{epoch:3d}, "
+ f"Loss: {loss:.4f} => x: {loss_component['x']:.4f}, "
+ f"xe: {loss_component['xe']:.4f}, "
+ f"e: {loss_component['e']:.4f} -> "
+ f"[acc: {epred_metric['acc']:.3f}, f1: {epred_metric['f1']:.3f} -> "
+ f"prec: {epred_metric['prec']:.3f}, rec: {epred_metric['rec']:.3f}] "
+ f"| {elapsed:.2f}s",
flush=True,
)
if epoch % args["iter_check"] == 0 or epoch == args["n_epoch"] - 1:
# tb eval
eval()
# eval()
print(f">> graphbeanatt-{args['name']}-{args['id']} >> DONE >>")