-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathsma.py
76 lines (60 loc) Β· 1.88 KB
/
sma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright 2021 Google LLC.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Basic profiling script for temporian.
The script creates a node, applies an sma to it, and runs the graph.
"""
import numpy as np
import pandas as pd
import temporian as tp
from temporian.implementation.numpy.data.event_set import EventSet
# Make results reproducible
np.random.seed(0)
# Control size of benchmark , N = 300000 takes about 5s to run
N = 300000
STORE, PRODUCT, TIMESTAMP, SALES, COSTS = (
"store_id",
"product_id",
"timestamp",
"sales",
"costs",
)
def main():
print(f"Running lag benchmark with N={N}...")
# Integer ids from 0 to 9
ids = list(range(int(10)))
timestamps = np.sort(np.random.randn(N) * 100)
product_ids = np.random.choice(ids, N)
store_ids = np.random.choice(ids, N)
evset = tp.from_pandas(
pd.DataFrame(
{
STORE: store_ids,
PRODUCT: product_ids,
TIMESTAMP: timestamps,
SALES: np.random.randn(N) * 100,
}
),
indexes=[STORE, PRODUCT],
)
node = evset.node()
sma = node.simple_moving_average(window_length=10)
res: EventSet = tp.run(
sma,
input={node: evset},
check_execution=False,
)
# Print output's first row, useful to check reproducibility
print(res)
if __name__ == "__main__":
main()