-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathadd_index.py
83 lines (66 loc) Β· 2.59 KB
/
add_index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright 2021 Google LLC.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Basic profiling script for temporian.
The script creates a node, applies an sma to it, and runs the graph.
"""
import numpy as np
import pandas as pd
import temporian as tp
from temporian.implementation.numpy.data.event_set import EventSet
def run(input_node, input_data, output_node):
tp.run(output_node, input={input_node: input_data}, check_execution=False)
def main():
print("Main")
# Make results reproducible
np.random.seed(0)
# Control size of benchmark
number_timestamps = 1_000_000
feature_values = list(range(int(10)))
index_values = list(range(int(5)))
timestamps = np.sort(np.random.randn(number_timestamps) * number_timestamps)
# all features are int categorical from 0 to 10
index_1 = np.random.choice(index_values, number_timestamps)
index_2 = np.random.choice(index_values, number_timestamps)
feature_1 = np.random.choice(feature_values, number_timestamps)
feature_2 = np.random.choice(feature_values, number_timestamps)
feature_3 = np.random.choice(feature_values, number_timestamps)
feature_4 = np.random.choice(feature_values, number_timestamps)
feature_5 = np.random.choice(feature_values, number_timestamps)
feature_6 = np.random.choice(feature_values, number_timestamps)
input_data = tp.from_pandas(
pd.DataFrame(
{
"timestamp": timestamps,
"index_1": index_1,
"index_2": index_2,
"feature_1": feature_1,
"feature_2": feature_2,
"feature_3": feature_3,
"feature_4": feature_4,
"feature_5": feature_5,
"feature_6": feature_6,
}
),
indexes=[
"index_1",
"index_2",
],
)
indexes = ["feature_1", "feature_2", "feature_3", "feature_4", "feature_5"]
input_node = input_data.node()
output_node = input_node.add_index(indexes)
run(input_node, input_data, output_node)
print("Done")
if __name__ == "__main__":
main()