-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathlinear_expr.h
225 lines (202 loc) · 7.56 KB
/
linear_expr.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_LINEAR_SOLVER_LINEAR_EXPR_H_
#define OR_TOOLS_LINEAR_SOLVER_LINEAR_EXPR_H_
/**
* \file
* This file allows you to write natural code (like a mathematical equation) to
* model optimization problems with MPSolver. It is syntactic sugar on top of
* the MPSolver API, it provides no additional functionality. Use of these APIs
* makes it much easier to write code that is both simple and big-O optimal for
* creating your model, at the cost of some additional constant factor
* overhead. If model creation is a bottleneck in your problem, consider using
* the MPSolver API directly instead.
*
* This file contains two classes:
* 1. LinearExpr: models offset + sum_{i in S} a_i*x_i for decision var x_i,
* 2. LinearRange: models lb <= sum_{i in S} a_i*x_i <= ub,
* and it provides various operator overloads to build up "LinearExpr"s and
* then convert them to "LinearRange"s.
*
* Recommended use (avoids dangerous code):
*
* \code
MPSolver solver = ...;
const LinearExpr x = solver.MakeVar(...); * Note: implicit conversion
const LinearExpr y = solver.MakeVar(...);
const LinearExpr z = solver.MakeVar(...);
const LinearExpr e1 = x + y;
const LinearExpr e2 = (e1 + 7.0 + z)/3.0;
const LinearRange r = e1 <= e2;
solver.MakeRowConstraint(r);
\endcode
*
* \b WARNING, AVOID THIS TRAP:
*
* \code
MPSolver solver = ...;
MPVariable* x = solver.MakeVar(...);
LinearExpr y = x + 5;
\endcode
*
* In evaluating "x+5" above, x is NOT converted to a LinearExpr before the
* addition, but rather is treated as a pointer, so x+5 gives a new pointer to
* garbage memory.
*
* For this reason, when using LinearExpr, it is best practice to:
* 1. use double literals instead of ints (e.g. "x + 5.0", not "x + 5"),
* 2. Immediately convert all MPVariable* to LinearExpr on creation, and only
* hold references to the "LinearExpr"s.
*
* Likewise, the following code is NOT recommended:
* \code
MPSolver solver = ...;
MPVariable* x = solver.MakeVar(...);
MPVariable* y = solver.MakeVar(...);
LinearExpr e1 = LinearExpr(x) + y + 5;
\endcode
*
* While it is correct, it violates the natural assumption that the + operator
* is associative. Thus you are setting a trap for future modifications of the
* code, as any of the following changes would lead to the above failure mode:
*
* * \code LinearExpr e1 = LinearExpr(x) + (y + 5); \endcode
* * \code LinearExpr e1 = y + 5 + LinearExpr(x); \endcode
*/
#include <ostream>
#include <string>
#include "absl/container/flat_hash_map.h"
namespace operations_research {
// NOTE(user): forward declaration is necessary due to cyclic dependencies,
// MPVariable is defined in linear_solver.h, which depends on LinearExpr.
class MPVariable;
/**
* LinearExpr models a quantity that is linear in the decision variables
* (MPVariable) of an optimization problem, i.e.
*
* offset + sum_{i in S} a_i*x_i,
*
* where the a_i and offset are constants and the x_i are MPVariables. You can
* use a LinearExpr "linear_expr" with an MPSolver "solver" to:
* * Set as the objective of your optimization problem, e.g.
*
* solver.MutableObjective()->MaximizeLinearExpr(linear_expr);
*
* * Create a constraint in your optimization, e.g.
*
* solver.MakeRowConstraint(linear_expr1 <= linear_expr2);
*
* * Get the value of the quantity after solving, e.g.
*
* solver.Solve();
* linear_expr.SolutionValue();
*
* LinearExpr is allowed to delete variables with coefficient zero from the map,
* but is not obligated to do so.
*/
class LinearExpr {
public:
LinearExpr();
/// Possible implicit conversions are intentional.
LinearExpr(double constant); // NOLINT
/***
* Possible implicit conversions are intentional.
*
* Warning: var is not owned.
*/
LinearExpr(const MPVariable* var); // NOLINT
/**
* Returns 1-var.
*
* NOTE(user): if var is binary variable, this corresponds to the logical
* negation of var.
* Passing by value is intentional, see the discussion on binary ops.
*/
static LinearExpr NotVar(LinearExpr var);
LinearExpr& operator+=(const LinearExpr& rhs);
LinearExpr& operator-=(const LinearExpr& rhs);
LinearExpr& operator*=(double rhs);
LinearExpr& operator/=(double rhs);
LinearExpr operator-() const;
double offset() const { return offset_; }
const absl::flat_hash_map<const MPVariable*, double>& terms() const {
return terms_;
}
/**
* Evaluates the value of this expression at the solution found.
*
* It must be called only after calling MPSolver::Solve.
*/
double SolutionValue() const;
/**
* A human readable representation of this. Variables will be printed in order
* of lowest index first.
*/
std::string ToString() const;
private:
double offset_;
absl::flat_hash_map<const MPVariable*, double> terms_;
};
std::ostream& operator<<(std::ostream& stream, const LinearExpr& linear_expr);
// NOTE(user): in the ops below, the non-"const LinearExpr&" are intentional.
// We need to create a new LinearExpr for the result, so we lose nothing by
// passing one argument by value, mutating it, and then returning it. In
// particular, this allows (with move semantics and RVO) an optimized
// evaluation of expressions such as
// a + b + c + d
// (see http://en.cppreference.com/w/cpp/language/operators).
LinearExpr operator+(LinearExpr lhs, const LinearExpr& rhs);
LinearExpr operator-(LinearExpr lhs, const LinearExpr& rhs);
LinearExpr operator*(LinearExpr lhs, double rhs);
LinearExpr operator/(LinearExpr lhs, double rhs);
LinearExpr operator*(double lhs, LinearExpr rhs);
/**
* An expression of the form:
*
* \code lower_bound <= sum_{i in S} a_i*x_i <= upper_bound. \endcode
* The sum is represented as a LinearExpr with offset 0.
*
* Must be added to model with
* \code
MPSolver::AddRowConstraint(const LinearRange& range,
const std::string& name);
\endcode
*/
class LinearRange {
public:
LinearRange() : lower_bound_(0), upper_bound_(0) {}
/**
* The bounds of the linear range are updated so that they include the offset
* from "linear_expr", i.e., we form the range:
* \code
lower_bound - offset <= linear_expr - offset <= upper_bound - offset.
\endcode
*/
LinearRange(double lower_bound, const LinearExpr& linear_expr,
double upper_bound);
double lower_bound() const { return lower_bound_; }
const LinearExpr& linear_expr() const { return linear_expr_; }
double upper_bound() const { return upper_bound_; }
private:
double lower_bound_;
// invariant: linear_expr_.offset() == 0.
LinearExpr linear_expr_;
double upper_bound_;
};
LinearRange operator<=(const LinearExpr& lhs, const LinearExpr& rhs);
LinearRange operator==(const LinearExpr& lhs, const LinearExpr& rhs);
LinearRange operator>=(const LinearExpr& lhs, const LinearExpr& rhs);
// TODO(user): explore defining more overloads to support:
// solver.AddRowConstraint(0.0 <= x + y + z <= 1.0);
} // namespace operations_research
#endif // OR_TOOLS_LINEAR_SOLVER_LINEAR_EXPR_H_