-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathcompute_partitions.py
262 lines (211 loc) · 8.96 KB
/
compute_partitions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#!/usr/bin/env python
# Copyright 2017-2023 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Computes the partition map for a segmentation.
For every labeled voxel of the input volume, computes the fraction of identically
labeled voxels within a neighborhood of radius `lom_radius`, and then quantizes
that number according to `thresholds`.
Sample invocation:
python compute_partitions.py \
--input_volume third_party/neuroproof_examples/training_sample2/groundtruth.h5:stack \
--output_volume af.h5:af \
--thresholds 0.025,0.05,0.075,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 \
--lom_radius 16,16,16 \
--min_size 10000
"""
from absl import app
from absl import flags
from absl import logging
from ffn.inference import segmentation
from ffn.inference import storage
from ffn.utils import bounding_box
import h5py
import numpy as np
from scipy.ndimage import filters
FLAGS = flags.FLAGS
flags.DEFINE_string('input_volume', None,
'Segmentation volume as <volume_path>:<dataset>, where'
'volume_path points to a HDF5 volume.')
flags.DEFINE_string('output_volume', None,
'Volume in which to save the partition map, as '
'<volume_path>:<dataset>.')
flags.DEFINE_list('thresholds', None,
'List of activation voxel fractions used for partitioning.')
flags.DEFINE_list('lom_radius', None,
'Local Object Mask (LOM) radii as (x, y, z).')
flags.DEFINE_list('id_whitelist', None,
'Whitelist of object IDs for which to compute the partition '
'numbers.')
flags.DEFINE_list('exclusion_regions', None,
'List of (x, y, z, r) tuples specifying spherical regions to '
'mark as excluded (i.e. set the output value to 255).')
flags.DEFINE_string('mask_configs', None,
'MaskConfigs proto in text foramt. Any locations where at '
'least one voxel of the LOM is masked will be marked as '
'excluded.')
flags.DEFINE_integer('min_size', 10000,
'Minimum number of voxels for a segment to be considered for '
'partitioning.')
def _summed_volume_table(val):
"""Computes a summed volume table of 'val'."""
val = val.astype(np.int32)
svt = val.cumsum(axis=0).cumsum(axis=1).cumsum(axis=2)
return np.pad(svt, [[1, 0], [1, 0], [1, 0]], mode='constant')
def _query_summed_volume(svt, diam):
"""Queries a summed volume table.
Operates in 'VALID' mode, i.e. only computes the sums for voxels where the
full diam // 2 context is available.
Args:
svt: summed volume table (see _summed_volume_table)
diam: diameter (z, y, x tuple) of the area within which to compute sums
Returns:
sum of all values within a diam // 2 radius (under L1 metric) of every voxel
in the array from which 'svt' was built.
"""
return (
svt[diam[0]:, diam[1]:, diam[2]:] - svt[diam[0]:, diam[1]:, :-diam[2]] -
svt[diam[0]:, :-diam[1], diam[2]:] - svt[:-diam[0], diam[1]:, diam[2]:] +
svt[:-diam[0], :-diam[1], diam[2]:] + svt[:-diam[0], diam[1]:, :-diam[2]]
+ svt[diam[0]:, :-diam[1], :-diam[2]] -
svt[:-diam[0], :-diam[1], :-diam[2]])
def load_mask(mask_configs, box, lom_diam_zyx):
if mask_configs is None:
return None
mask = storage.build_mask(mask_configs.masks, box.start[::-1],
box.size[::-1])
svt = _summed_volume_table(mask)
mask = _query_summed_volume(svt, lom_diam_zyx) >= 1
return mask
def compute_partitions(seg_array,
thresholds,
lom_radius,
id_whitelist=None,
exclusion_regions=None,
mask_configs=None,
min_size=10000):
"""Computes quantized fractions of active voxels in a local object mask.
Args:
thresholds: list of activation voxel fractions to use for partitioning.
lom_radius: LOM radii as [x, y, z]
id_whitelist: (optional) whitelist of object IDs for which to compute the
partition numbers
exclusion_regions: (optional) list of x, y, z, r tuples specifying regions
to mark as excluded (with 255). The regions are spherical, with
(x, y, z) definining the center of the sphere and 'r' specifying its
radius. All values are in voxels.
mask_configs: (optional) MaskConfigs proto; any locations where at least
one voxel of the LOM is masked will be marked as excluded (255).
Returns:
tuple of:
corner of output subvolume as (x, y, z)
uint8 ndarray of active fraction voxels
"""
seg_array = segmentation.clear_dust(seg_array, min_size=min_size)
assert seg_array.ndim == 3
lom_radius = np.array(lom_radius)
lom_radius_zyx = lom_radius[::-1]
lom_diam_zyx = 2 * lom_radius_zyx + 1
def _sel(i):
if i == 0:
return slice(None)
else:
return slice(i, -i)
valid_sel = [_sel(x) for x in lom_radius_zyx]
output = np.zeros(seg_array[valid_sel].shape, dtype=np.uint8)
corner = lom_radius
if exclusion_regions is not None:
sz, sy, sx = output.shape
hz, hy, hx = np.mgrid[:sz, :sy, :sx]
hz += corner[2]
hy += corner[1]
hx += corner[0]
for x, y, z, r in exclusion_regions:
mask = (hx - x)**2 + (hy - y)**2 + (hz - z)**2 <= r**2
output[mask] = 255
labels = set(np.unique(seg_array))
logging.info('Labels to process: %d', len(labels))
if id_whitelist is not None:
labels &= set(id_whitelist)
mask = load_mask(mask_configs,
bounding_box.BoundingBox(
start=(0, 0, 0), size=seg_array.shape[::-1]),
lom_diam_zyx)
if mask is not None:
output[mask] = 255
fov_volume = np.prod(lom_diam_zyx)
for l in labels:
# Don't create a mask for the background component.
if l == 0:
continue
object_mask = (seg_array == l)
svt = _summed_volume_table(object_mask)
active_fraction = _query_summed_volume(svt, lom_diam_zyx) / fov_volume
assert active_fraction.shape == output.shape
# Drop context that is only necessary for computing the active fraction
# (i.e. one LOM radius in every direction).
object_mask = object_mask[valid_sel]
# TODO(mjanusz): Use np.digitize here.
for i, th in enumerate(thresholds):
output[object_mask & (active_fraction < th) & (output == 0)] = i + 1
output[object_mask & (active_fraction >= thresholds[-1]) &
(output == 0)] = len(thresholds) + 1
logging.info('Done processing %d', l)
logging.info('Nonzero values: %d', np.sum(output > 0))
return corner, output
def adjust_bboxes(bboxes, lom_radius):
ret = []
for bbox in bboxes:
bbox = bbox.adjusted_by(start=lom_radius, end=-lom_radius)
if np.all(bbox.size > 0):
ret.append(bbox)
return ret
def main(argv):
del argv # Unused.
path, dataset = FLAGS.input_volume.split(':')
with h5py.File(path) as f:
segmentation = f[dataset]
bboxes = []
for name, v in segmentation.attrs.items():
if name.startswith('bounding_boxes'):
for bbox in v:
bboxes.append(bounding_box.BoundingBox(bbox[0], bbox[1]))
if not bboxes:
bboxes.append(
bounding_box.BoundingBox(
start=(0, 0, 0), size=segmentation.shape[::-1]))
shape = segmentation.shape
lom_radius = [int(x) for x in FLAGS.lom_radius]
corner, partitions = compute_partitions(
segmentation[...], [float(x) for x in FLAGS.thresholds], lom_radius,
FLAGS.id_whitelist, FLAGS.exclusion_regions, FLAGS.mask_configs,
FLAGS.min_size)
bboxes = adjust_bboxes(bboxes, np.array(lom_radius))
path, dataset = FLAGS.output_volume.split(':')
with h5py.File(path, 'w') as f:
ds = f.create_dataset(dataset, shape=shape, dtype=np.uint8, fillvalue=255,
chunks=True, compression='gzip')
s = partitions.shape
ds[corner[2]:corner[2] + s[0],
corner[1]:corner[1] + s[1],
corner[0]:corner[0] + s[2]] = partitions
ds.attrs['bounding_boxes'] = [(b.start, b.size) for b in bboxes]
ds.attrs['partition_counts'] = np.array(np.unique(partitions,
return_counts=True))
if __name__ == '__main__':
flags.mark_flag_as_required('input_volume')
flags.mark_flag_as_required('output_volume')
flags.mark_flag_as_required('thresholds')
flags.mark_flag_as_required('lom_radius')
app.run(main)