-
Notifications
You must be signed in to change notification settings - Fork 481
/
Copy pathgeometry_150M_generate.gin
47 lines (39 loc) · 1.42 KB
/
geometry_150M_generate.gin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
NUM_EMBEDDINGS = 1024
# Number of parameters = 152M
NUM_LAYERS = 12
EMBED_DIM = 1024
NUM_HEADS = 8
HEAD_DIM = 128
MLP_DIM = 4096
transformer_layer.TransformerLayerGenerate:
num_heads = %NUM_HEADS
head_size = %HEAD_DIM
window_length = 1024
use_long_xl_architecture = False
max_unrolled_windows = -1 # Always unroll.
relative_position_type = "t5" # Can be "fourier", "t5", or None.
use_causal_mask = True
attn_dropout_rate = %ATTN_DROPOUT_RATE # Attention matrix dropout.
memory_num_neighbors = 0
dtype = %DTYPE
decoder_stack.DecoderStackGenerate:
num_layers = %NUM_LAYERS
embedding_size = %EMBED_DIM
embedding_stddev = 1.0
layer_factory = @transformer_layer.TransformerLayerGenerate
dstack_window_length = 0
use_absolute_positions = False
use_final_layernorm = True # Final layernorm before token lookup.
final_dropout_rate = %DROPOUT_RATE # Dropout before token lookup.
final_mlp_factory = None # Final MLP to predict target tokens.
recurrent_layer_indices = ()
memory_factory = None # e.g. @memory_factory.memory_on_tpu_factory
memory_layer_indices = ()
dtype = %DTYPE
models.DecoderOnlyLanguageModelGenerate:
num_heads = %NUM_HEADS
head_size = %HEAD_DIM
task_config = @decoder_stack.TransformerTaskConfig()
decoder_factory = @decoder_stack.DecoderStackGenerate
training_loop.Trainer:
model_definition = @models.DecoderOnlyLanguageModelGenerate